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1 A Motivating Example for Studying Stochastic PDEs

1.1 Fluids: an example of what a stochastic PDE looks like

Here is an analogy. When you see a line of ants, you may think that the line is relatively
straight, so you write down an equation that describes the motion. If you increase the
precision of your model, you may see that the ants actually move with some random
fluctuations, so you add some randomness to your model. The more precision you require,
the more you realize that the ants are not moving in a straight line at all and are instead
constantly bumping into each other, exchanging information. This is how stochastic PDEs
are.

Imagine that we have a fluid for which the velocity of fluid particles are known, say
u(x, t). As a simple model for the fluid particle, we write

dx

dt
= u(x, t).

This is an ODE which, as a first approximation, gives us a good idea of a model for what
is happening. To take into account the thermal fluctuation of the fluid, we may write

dx

dt
= u(x, t)︸ ︷︷ ︸

vector field

+σ(x, t)︸ ︷︷ ︸
matrix

η(t), (1)

with η representing “white noise” (to be formally defined later) and σ(x, t) measuring the
strength of the fluctuation at (x, t). Here, η is a Gaussian process with E[η(t)] = 0 and
E[η(t)η(s)] = δ0(t− s), where δ0 is the Dirac delta “function” at 0.

In reality, u itself solves some PDE, and in the case of a (viscous) incompressible fluid,
we have

ut + (u · ∇)u+ ∇P︸︷︷︸
pressure

= ν∆u+ f︸︷︷︸
force

∇ · u = 0,

where for simplicity we assume σ =
√

2νI. We have a system of 4 equations with 3
unknowns (the function u), so we need to solve this equation for the pair (u, P ). A natural
model example for f is that f = f(x, t) is “white noise” in (x, t) (sometimes, we assume f
is white in t and “colored” in x).

1.2 Regularity issues with white noise

Going back to the previous equation (1), how can we make sense of this equation? The
problem is that “white noise” cannot be realized as a function. A solution to (1) is an
example of a diffusion.1 Observe that if u = 0 and σ = 1, then dx

dt = η. As it turns

1Diffusions were first described by Kolmogorov in the early 30s and later described by Paul Lévy and
Itô.
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out, x(t) = x(0) + B(t), where B is a standard Brownian motion.2 It is well-known that
Brownian motion can be realized as a continuous function, in fact B ∈ C1/2−. Here, we
write Cα as the space of Hölder continuous functions of exponent α and Cα− =

⋂
β<α Cβ.

In fact, η = Ḃ ∈ C−1/2−. By f ∈ Cβ for β < 0, we mean f = ġ with g ∈ Cβ+1 (we will give
a more robust definition of this later).

Going back to ẋ = u(x, t) + σ(x, t)η(t), we expect this to have a solution x(·) ∈ C1/2−.
To make sense of this, we write

x(t) = x(0) +

∫ t

0
u(x(s), s) ds+

∫ t

0
σ(x(s), s) η(s) ds︸ ︷︷ ︸

dB(s)

.

We face the following difficulty:

η(ϕ) =

∫
η(s)ϕ(s) ds =

∫
Ḃ(s)ϕ(s) ds

IBP
= −

∫
B(s)ϕ̇(s) ds,

where ϕ is smooth with compact support. The problem is that f is not C1, only C1/2−.
This calls for studying

∫ t
0 g df with f, g continuous functions. This problem has a rich

history that we now review:

1. In fact, Riemann and Steiltjes defined the integral
∫ t

0 g df as

∫ t

0
g df = lim

n→∞

2n∑
i=0

g(si)(f(ti+1)− f(ti)) (2)

with si ∈ [ti, ti+1], where the ti form a mesh with 2n points. It turns out that this
equation converges (no matter what we choose for si) if g is continuous (g ∈ C0) and
f ∈ BV is of bounded variation. Recall that f ∈ BV means ‖f‖BV < ∞, where
‖f‖BV = sup0<t1<···<tk<t

∑k−1
i=1 |f(ti+1) − f(ti)|. In particular, if g ∈ C0 and f ∈ C1,

then
∫ t

0 f dg can be defined.

2. Lebesgue theory allows us to interpret
∫ t

0 f dg as
∫ t

0 f dµ, where µ = g′ in a weak
sense: ∫

ϕdµ = g′(ϕ) = −
∫
ϕ′g dt

for all smooth ϕ. In this picture, f ∈ BV ⇐⇒ f ′ can be realized as a measure.

3. So far, we know how to define
∫
g df with g ∈ C0, f ∈ BV. But we can also make

sense of it if g ∈ BV, f ∈ C0 by declaring
∫ t

0 g df = g(t)f(t)− g(0)f(0)−
∫ t

0 f dg.

2The moral here is to still differentiate things that are not differentiable. Don’t let that stop you.
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4. Young observed that equation (2) still works if f ∈ Cα, g ∈ Cβ with α + β > 1. In
fact, (2) works even when f ∈ BV1/α, g ∈ BV1/β, where

‖f‖BVp = sup
0≤t1<···<th≤t

∑
i

|f(ti+1)− f(ti)|p

for p ≥ 1. Observe that BV1/α ) Cα. Moreover, Young proved that h(t) =
∫ t

0 g df
satisfies the following bound:

|h(t)− h(s)− g(s)(f(t)− f(s))| ≤ c|t− s|α+β (3)

where c is a constant depending on ‖f‖Cα and ‖g‖Cα . In fact, h can be uniquely
specified as the only function for which h(0) = 0, and h satisfies (for some constant
c) (3). If h, h̃ are two solutions, then k = h− h̃ satisfies |k(t)− k(s)| ≤ c|t− s|α+β.

1.3 Ways of defining the stochastic integral with irregular functions

Going back to our integral
∫ t

0 σ(x(s), s) dB(s), Young’s theory does not apply because

both σ(x(s), s) and B(s) are both in C1/2−. As an example, consider
∫ t

0 F (B(s)) dB(s) for
F ∈ C1. In fact, the approximation in (2) may fail in two ways. Either the limit does not
exist or the limit exists but depends on the choice of si! Some popular choices of limits in
probability theory are:

Example 1.1. Itô defined the integral

M(t) =

∫ t

0
F (B(s)) dB(s) = lim

n→∞

2n−1∑
i=0

F (B(ti))(B(ti+1)−B(ti)).

The advantage is that the outcome M(t) is a martingale.

Here is another choice:

Example 1.2. Statonovich defined the approximation by replacing F (B(ti)) with

F (B(ti)) + F (B(ti+1))

2
.

There is also a “backward” way, where we choose F (B(ti+1)) instead. Next time, we
will discuss the drawbacks of Itô calculus and introduce rough path theory.
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2 Stochastic Integration With Irregular Functions

2.1 Integration of rough deterministic functions

Our ultimate goal is to study stochastic PDEs, but before that, we need to study certain
developments in studying stochastic ODEs from the 90s. For now, we are reviewing the
stochastic differential equation

dx

dt
= u(x, t) + σ(x, t)ξ(t),

where ξ(t) is “white noise.” As we discussed last time, we may make sense of this equation
if we have a good candidate for ∫ t

0
f(s) dg(s)

if f and g are as bad as Brownian motion. That is, we need to be able to deal with f, g ∈ Cα
for α < 1/2. Last time, we learned that h(t) =

∫ t
0 f dg = limn→∞

∑2n−1
j=0 f(sj)(g(tj+1) −

g(tj)) with sj ∈ [tj , tj+1] and tj = t · 2−n, provided that f ∈ Cα and g ∈ Cβ with α+β > 1.
Alternatively, we can state the following result of Young:

Theorem 2.1. Given f ∈ Cα, g ∈ Cβ with α + β > 1, there exists a unique h ∈ Cβ such
that h(0) = 0 and

|h(t)− h(s)− f(s)(g(t)− g(s))| ≤ [f ]α[g]β|t− s|α+β.

The idea is that we can approximate g by smooth functions to compute the integral, and
if we keep doing this with better approximations, we will get the same answer, regardless
of our choice of approximation.

An equivalent way to think about this is if A : C1 × C1 → C0 by A (f,G) = fG′, then

this A has a continuous extension to Â : Cα × Cγ → Cγ with α+ γ > 0. Here, γ = β − 1.
This gives us a satisfactory candidate for fg′, where f ∈ Cα, g ∈ Cβ, α + β > 1. The
Radon-Nikodym theorem says that if a distribution is a measure, then we can multiply
it by a function and we get another measure; this, by comparison says we can multiply a
distribution (which can be worse than a measure) by a function as long as the function has
enough regularity.

As we mentioned last time, Young’s integral cannot be used for our equation. Imagine
that we have f ∈ Cα, g ∈ Cβ, and α + β ≤ 1 with α, β ∈ (0, 1). What can be said about
fg′? We may attempt to make sense of it by replacing g with a smooth approximation gε
and examine limε→0 fg

′
ε. It turns out that the limit may not exist or the limit depends on

the approximation.
In this context, let us examine the following question: Given Hölder f, g, consider the

set H of h such that h(0) = 0 and for some C,

|h(t)− h(s)− f(s)(g(t)− g(s))| ≤ C|t− s|α+β.

8



Observe that if h, h̃ ∈H , then h− h̃ ∈ Cα+β. In fact, given any h0 ∈H ,

H = {h0 + k : k(0) = 0, k ∈ Cα+β}.

Theorem 2.2 (Lyons-Victoire, 1999). H 6= ∅ always.

The multidimensional version of this theorem was proved by Martin Hairer in 2013 or
so. In other words, if f ∈ Cα(Rd), g ∈ Cβ(Rd), then we have at least one candidate for
“f∇g” (a function multiplied by a distribution). This is basically a distribution that near
x, is “close” to f(x)∇g.

2.2 Integration of functions of Brownian motion

How does stochastic calculus fit into this framework? Let’s go back to our original problem

ẋ = u(x, t) + σ(x, t)ξ, ξ = Ḃ.

Our first attempt is to make sense of
∫ t

0 F (B(s)) dB(s).
It is not hard to show (using the strong law of large numbers) that

lim
n→∞

2n−1∑
j=0

[B(tj+1)−B(tj)]
2 = t

almost surely. Observe that

∫ t

0
B dB ≈


∑

iB(ti)(B(ti+1)−B(ti)) Itô (I)∑
iB(ti+1)(B(ti+1)−B(ti)) backward (II)∑
i
B(ti+1)+B(ti)

2 (B(ti+1)−B(ti)) Stratonovich (III).

Observe that II − I → t as n→∞.
Itô’s candidate was to define∫ t

0
F (B(s)) dB(s) = lim

n→∞

∑
i

F (B(ti))(B(ti+1)−B(ti)),

where the limit exists in L2(P). This is a fairly weak type of convergence, as opposed to
Young’s integral. Indeed, B 7→ I (B) =

∫ 1
0 F (B(s)) dB(s) is a only a measurable map and

is not continuous. This is an unsatisfactory feature of Itô’s theory.
Lyons made a very important observation, namely if we have a candidate for B(s, t) =∫ t

s (B(θ) − B(s)) ⊗ dB(θ) (where the tensor denotes making a matrix out of this), then

9



the map (B,B) 7→ I (B,B) =
∫ t

0 F (B) dB is now continuous. (Though B(s, t) must satisfy
some algebraic equations known as Chen’s relations.)

For this theory, we can replace B with any function (or possibly random rough path) that
is in Cα, provided that α > 1/3.

2.3 The stochastic heat equation

We are now ready to discuss stochastic partial differential equations.

Example 2.1 (Stochastic heat equation). The stochastic heat equation (SHE) is

ut = ∆u+ ξ,

where ξ is white noise in (x, t). By this, we mean that ξ is a Gaussian process, E[ξ(x, t)] = 0,
and E[ξ(x, t)ξ(y, s)] = δ0(x − y, t − s) (to be formally defined later). One can show that
ξ ∈ Cα for any α < −d/2 − 1. (Here, we are better off to use a “parabolic” metric, i.e.

|(x, t)− (y, s)|par = |x− y|+ |t− s|1/2. Then Hölder means |f(x,y)−f(y,s)|
|(x,t)−(y,s)|αpar

.)

Because of “parabolic regularity” (which we will discuss later), we expect u ∈ C(−d/2+1)− .
For example, when d = 1, u ∈ C1/2− in the space variable, and it turns out that u ∈ C1/4−

in the time variable. In higher dimensions, this will not be a function; we have to live with
distributions. We can make sense of this PDE by first using Duhamel to write

u(x, t) =

∫
p(x− y, t)u0(y) dy +

∫ t

0

∫
p(x− y, t− s) ξ(y, s) dy ds︸ ︷︷ ︸

W (dy,ds)

,

where p is a fundamental solution of the heat equation and W (dy, ds) is known as “cylin-
drical Brownian motion.”
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3 Important Stochastic PDEs

3.1 The stochastic heat equation

Last time, we considered the stochastic heat equation

ut = ∆u+ ξ, x ∈ Rd, t ∈ R

where ξ is space time white noise. We stated that we expect u ∈ C−d/2+1. In particular,
u ∈ C1/2 in x and ∈ C1/4 in t when d = 1, but when d > 1 we don’t have a function; it will
be a distribution.

Later, we will see how a “subcritical” perturbation can be treated after a “renormal-
ization.” To explain this, let us first study the scaling properties of the above stochastic
heat equation. Recall that ξ is a 0-mean Gaussian with E[ξ(x, t)ξ(y, s)] = δ0(x− y, t− s).
So λ→∞, λd+1ρ(λx, λ2t)→ δ0(x, t). Observe that λd+2δ0(λx, λ2x) = δ0(x, t). Hence,

ξ̂(x, t) = λ(d+2)/2ξ(λx, λ2t)
d
= ξ(x, t).

Now we go back to the stochastic heat equation, and if u is a solution, and if û(x, t) =
λd/2−1u(λx, λ2t), then

(û−∆û)(x, t) = λd/2+1(ut −∆u)(λx, λ2t) = ξ̂
d
= ξ.

Thus, û is again a solution of the stochastic heat equation. This is compatible with our
guess for the Hölder regularity of the solution, namely u ∈ C(1−d/2)− in x and ∈ C(1/2−d/4)−

in t.

3.2 The SHE with multiplicative noise

This PDE looks like
Zt = ∆Z + σ(Z)ξ

for a suitable function σ : R→ R.
Two examples that are particularly important are:

1. σ(Z) =
√
Z. This example appears in several models in math biology and population

dynamics. Imagine you are modeling fish in a lake. Say each fish has an independent
exponentially distributed clock that tells you when it dies. When it dies, you replace
the fish with a number of descendants.

Imagine that each particle travels as a Brownian motion, all independent, and after an
exponential random time, a particle is replaced with N many particles with E[N ] =
m. When m = 1, we have a critical regime, and as the initial number of particles goes
to infinity, we get a measure-valued process known as super Brownian motion.
When d = 1, this measure has a density Z, and Z solves this SHE with multiplicative
noise for σ(Z) =

√
Z. This is also associated with Brownian snake.
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2. σ(Z) = Z. As we will see shortly, this case is related to stochastic growth models.

It turns out that we can make sense of the SHE with multiplicative noise à la Itô. In other
words, we write

Z(x, t) =

∫
p(x− y, t)Z(y, 0) dt+

∫ t

0

∫
p(x− y, t− s)Z(y, s) ξ(y, s) dy dx︸ ︷︷ ︸

W (dy,ds)

when d = 1. Note that we still have the Hölder continuous Z multiplied by the distribution
ξ. Hairer treated this PDE in 2013.

3.3 The Kardar-Parisi-Zhang equation

We wish to model stochastic growths. Often we have a random interface separating different
phases. If the interface can be represented by a graph of a (height) function h : Rd×[0, T ]→
R, then the Hamilton-Jacobi PDE of the form

ht = H(hx) (+∆u)

would be a good model as a first approximation. To capture the roughness of the interface,
we may write

ht = H(hx) +D∆h+ λξ.

After some manipulation (expanding h about a linear function), we end up with the KPZ
equation:

ht = |hx|2 + ∆h+ ξ.

This is a far more singular PDE than what we have seen before. Note that when d = 1,
we expect h ∈ C1/2−, and hx ∈ C−1/2.

The main challenge is to make sense of |hx|2. Indeed, the KPZ equation is “subcritical”
only when d = 1. To explain this, let h be a solution to this equation, and set ĥ(x, t) =
λd/2−1h(λx, λ2t). Then

(ĥt −∆ĥ)(x, t) = λd/2+1ξ(λx, λ2t)︸ ︷︷ ︸
ξ̂(x,t)

+λd/2+1|hx(λx, λ2t)|2

= ξ̂(x, t) + λ1−d/2|ĥx(x, t)|2.

There are a few cases:

1. If d = 1, then as λ→ 0, the nonlinearity disappears. So, locally, the nonlinearity can
be ignored!

2. If d = 2, this is the critical regime. In fact, if we multiply |hx|2 with a constant of
size C√

| log ε|
(after some smoothing), then we know how to handle the PDE.
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3. If d > 2, then this is an open problem. We need to replace C√
| log ε|

with Cεd/2−1.

First observe that if Z = eh and h solves the KPZ equation, then Z solves the SHE with
multiplicative noise. This is called the Hopf-Cole transform. This is surprising because
the type of singularity we encounter in the KPZ equation is much worse than in the SHE
with multiplicative noise. The problem is that the type of solution we had for the SHE
with multiplicative noise à la Itô, which means that the usual chain rule must be corrected.
Recall that if ẏ = b(x, t) + σdB(t), then

dϕ(y) = ϕ′(y)(b dt+ σ dB(t)) +
1

2
ϕ′′(y)σ2 dt,

where d means the derivative. Recall that
∑

j(B(tj+1)−B(tj))
2 → t, so (dB)2 = dt. Thus,

we get the Itô correction.
Let’s go back to Hopf-Cole and do it carefully. To do this carefully, take a smooth

kernel χ with
∫
χ = 1, set ξε(x) = ε−dξ(x/ε), and put

ξε(x, t) =

∫
χε(x− y)ξε(y, t).

Then first solve
Zεt = Zεxx + ξεZε.

Fix x, and treat this equation as a stochastic differential equation in t. Observe that

E[ξ(x, t)2] = E

[(∫
ξ(y, t)χε(x− y) dy

)2
]

= E
[∫∫

ξ(y, t)ξ(y′, t)χε(x− y)χε(x− y′) dy dy′
]

= δ0(t)

∫
(χε(x− y))2 dy

= δ0(t)ε−1

(∫
χ2

)
︸ ︷︷ ︸

c

.

If hε = logZε, this satisfies

hεt = hεxx +

[
(hεx)2 − 1

2
cε−1

]
+ ξε.

We aimed for the KPZ equation, but letting hε → h, we get that

ht = hxx + (h2
x −∞) + ξ.

So we get that this blows up, but we know exactly how.

13



4 Final Overview of Stochastic PDEs

4.1 The KPZ equation

Last time, we argued that by Itô calculus, we can make sense of the SPDE

Zt = Zxx + Zξ

when d = 1. We want to use this solution to come up with a candidate of a solution to the
KPZ equation

ht = hxx + |hx|2 + ξ.

We may use the Hopf-Cole transform to get a solution for this equation utilizing the
previous SPDE. To achieve this, we smoothize ξ in the first SPDE by replacing ξ with
ξε ∗x χε, which is white in time and smooth in space. Here, χε(x) = 1

εχ(xε ) with χ a
smooth function of compact support and total integral 1. Then

Zεt = Zεxx + Zεξε.

As we saw last time, for fixed x, ξ(x, t) is a multiple of standard white noise with

E[ξ(x, t)ξ(x, s)] = δ0(t− s),∫
(ξε)2(y) dy = δ0(t− s)ε−1

∫
χ2(y) dy︸ ︷︷ ︸
C

=: δ0(t− s)Cε.

In other words, if B represents a standard Brownian motion, we can represent

ξε(x, t)
d
=
√
CεḂ(t).

Writing z(t) = Zε(x, t), we can write the smoothized equation as

dz = b(t)︸︷︷︸
Zεxx(x,t)

dt+ Zε(x, t)
√
Cε dB.

We now apply Hopf-Cole:

d(log z︸︷︷︸
hε

) =
dz

z
− (Zε)2Cε

z2
dt

(using (dB)2 = dt). Simplifying, we get

dhε =

(
Zεxx
Zε
− Cε

2

)
dt+

√
Cε dB.

14



Here,

hε = logZε, hεx =
Zεx
Zε
, hεxx =

Zεxx
Zε
− (hεx)2.

Hence,

hεt = hεxx +

[
(hεx)2 − Cε

2

]
+ ξε.

Thus, we can renormalize the KPZ equation by subtracting a constant multiple of 1/ε from
the right hand side:

ht = hxx + (h2
x −∞) + ξ

4.2 Stochastic quantization

In Euclidean Quantum Field Theory, we need to make sense of probability measures that
are formally expressed as

1

Z
e−H (φ)Dφ,

where φ is a field, i.e. φ : Rd → R, and Dφ is a Lebesgue-like measure on the space of φs.
This may be compared with the following finite dimensional model: H : RN → R and the
minimizer of H correspond to the equilibrium states. If we take into account the thermal
fluctuations, we would have equilibrium measures of the form

1

Z
e−H(x) dx︸︷︷︸

Leb in RN
.

Observe that a gradient ODE would allow us to give a dynamical approximation to our
equilibrium states. For example, ẋ = −∇H(x) would allow us to approximate the mini-
mizer of H. As for 1

Z e
−H(x) dx, we need to solve

ẋ = −∇H(x) + Ḃ(t).

Then the law of x(t) as t→∞ is exactly 1
Z e
−H(x) dx.

In 1981, Parisi and Wu suggested that a dynamical approximation as in this previous
equation would approximate the formal probability measures with a mathematically more
tractable model. Indeed, if we have a candidate for an inner product on our function space,
then

φt = −∂H (φ) + ξ(x, t),

which is called the stochastic quantization. Hopefully, φ(·, t) ≈ 1
Z e
−H (φ)Dφ for large

t.
Let’s consider some examples:
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Example 4.1. Consider

H (φ) =

∫
Rd

(
1

2
|∇φ|2 + V (φ)

)
dx,

where V : R → R. We may replace Rd with a bounded domain with a suitable boundary
condition. If we use the L2 inner product, then

(∂H )φψ =

∫ (
−∆φ+ V ′(φ)

)
ψ.

Hence, the stochastic quantization equation becomes

φt = ∆xφ− V ′(φ) + ξ.

This is a perturbation of the SHE. The best we can hope for is a regularity of the form
φ ∈ C(1−d/2)−, which means that φ is a function only when d = 1. Hence, V ′(φ) is the
main challenge when V ′ is nonlinear.

4.3 The Gaussian Free Field

Here is a brief history of 1
Z e
−H (φ)Dφ and stochastic quantization. First consider the case

V = 0 (or V (φ) = m2φ2/2). Then what we have for our formal probability measure is
a Gaussian measure though in infinite dimension. Using the L2 inner product and when
V = 0, what we have is

1

Z
e−

1
2
〈(−∆)φ,φ〉.

This is the celebrated Gaussian Free Field (GFF). Its covariance is (−∆)−1, which has
a kernel known as Green’s function. In a domain D, we write GD(x, y) for this kernel:
Under GFF,

E[φ(x)φ(y)] = GD(x, y).

However, we expect φ ∈ C(1−d/2)−, hence not a function when d > 1.
For example, when d = 1, D = (0,∞), and we have the boundary condition φ(0) = 0,

then
GD(x, y) = min(x, y).

This is the correlation of Brownian motion in d = 1. Similarly, for D = (0, `) with 0
boundary condition, we get

GD(x, y) = min(x, y)− 1

`
xy,

which corresponds to a Brownian bridge in (0, `).
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More generally, we have Feynman-Kac

1

Z
e−

∫
( 1

2
|φ′(x)|2+V (φ(x))) dxDφ = e−

∫
V (φ(x)) dx µ0(dφ)︸ ︷︷ ︸

law of BM

.

Next, consider d = 2. In this case, the GFF is “conformally invariant.” This has to do
with the fact that if h : D → D′ is conformal, then GD(z, z′) = GD

′
(h(z), h(z′)). In fact, φ

in GFF can be used to study Schramm-Loewner Evolution in critical statistical mechanics
(ż = eγφ(z)). Also, there are models for randomly selected Riemannian metrics that can
be expressed as eγφ(x,y)(dx2 + dy2), where φ is selected according to the GFF.

Finally, let us go back to the PDE

φt = ∆φ− V ′(φ) + ξ

and examine the existence of a solution when V ′ is not linear. As a classical example,
consider V (φ) = φ4/4, so that V ′(φ) = φ3. Again, it is not clear how to make sense of φ3

when d ≥ 2, as φ is a distribution. To get a feel for this, first let us figure out when this
equation is subcritical. Let φ solve this equation, and set φ̂(x, t) = λd/2−1φ. Then we can
readily show

φ̂t = ∆φ̂− λ4−dφ̂3 + ξ̂.

So the model is subcritical iff d ≤ 3. The case d = 2 was solved back in the late 80s. The
case d = 3 was solved in 2014 by Hairer. We need to renormalize the equation as

φεt = ∆φε − [(φε)3 − cεφε] + ξε

with cε = O(ε−1).
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5 Integration With Respect to Rough Functions

5.1 Lyons’ approach and Chen’s relation

Today, we try to solve ODEs of the form ẏ = V (y)ẋ, where V is a C2 function, and x is
a Hölder continuous function, say, of exponent α. If α > 1/2, we can study this ODE by
first making sense of integrals of the form

∫ t
0 V (y(θ)) dx(θ). We develop a strategy to deal

with such integrals when 1/3 < α ≤ 1/2. Let’s explain the idea first.
We wish to make sense of

y(t)− y(s) =

∫ t

s
V (y(θ)) dx(θ).

To make sense of the right hand side, we may try the following approximation for small
t− s: ∫ t

s
V (y(θ)) dx(θ) ≈ V (y(s))

∫ t

s
dx(θ)︸ ︷︷ ︸
|t−s|α

+O(|t− s|2α).

If we have a very fine mesh for defining our integral, then
∑

i |ti − ti+1|2α is small only
when 2α > 1. This suggests a finer Taylor expansion of the form∫ t

s
V (y(θ)) dx(θ) =

∫ t

s
[V (y(s)) +DV (y(s))(y(θ)− y(s))] dx(θ) +O(|t− s|3α)

=

∫ t

s
[V (y(s)) +DV (y(s))V (y(s))(x(θ)− x(s)) dx(θ)] +O(|t− s|3α)

= V (y(s))

∫ t

s
dx(θ) +DV (y(s))V (y(s))

∫ t

s
(x(θ)− x(s)) dx(θ)

+O(|t− s|3α)

To make this work, we still need to make sense of∫ t

s
(x(θ)− x(s))⊗ dx(θ) =

[∫ t

s
(xi(θ)− xi(s)) dxj(θ)

]`
i,j=1

.

Terry Lyons’ idea in 1990 was to choose a candidate for X(s, t) =
∫ t
s (x(θ)−x(s))⊗ dx(θ),

and given (x(·),X(·, ·)), we can make sense of integrals of the form
∫ t
s V (y(θ)) dx(θ). For

example, given (x,X), we can define

I (x) =

∫ T

0
F (x) dx

for any C2 function F , with I (x) continuous in x.
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Theorem 5.1 (Lyons-Victoire). Given x ∈ Cα, there exists a function z ∈ Cα such that
z(0) = 0 and

|z(t)− z(s)− x(s)⊗ (x(t)− x(s))| ≤ x0[x]2α|t− s|2α.

Here, [x]α = sups 6=t∈[0,1]
|x(t)−x(s)|
|t−s|α .

Here, we want to think of

z(t) =

∫ t

0
x(θ)⊗ dx(θ),

so that

z(t)− z(s) =

∫ t

s
x(θ)⊗ dx(θ).

We also want to think of

z(t)− z(s)− x(s)⊗ (x(t)− x(s)) = X(s, t).

Let us write x(s, t) = x(t)− x(s), so that we can write

z(s, t) := z(t)− z(s) = X(s, t) + x(s)⊗ x(s, t).

From s < u < t =⇒ z(s, u) + z(u, t) = z(s, t), we learn that X(s, t) must satisfy the
following formula, known as Chen’s relation:

X(s, u) + X(u, t) = X(s, t) + [x(s)⊗ x(s, t)− x(s)⊗ x(s, u)− x(u)⊗ x(u, t)]

Using x(s, t) = x(s, u) + x(s, t), we get

= X(s, t) + x(s, u)⊗ x(u, t).

We can now define

[(x(·),X(·, ·))]α := [x]α + sup
s 6=t∈[0,T ]

|X(s, t)|
|t− s|2α

.

Remark 5.1 (Geometric Rough Path). Roughly, żi,j = xiẋj . Then

żij + żji = xiẋj + xj ẋi =
d

dt
(xixj).

If the product rule applies, we expect

zij(s, t) + zji(s, t) = xi(t)xj(t)− xi(s)xj(s).

In general, this may not be true. For example, Itô calculus is not geometric, while
Stratonovich calculus is geometric.
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5.2 Convergence of the integral

Theorem 5.2 (Lyons). Let (x,X) be as above (Chen’s relation + [(x,X)]α <∞), and let
F ∈ C2. Then we can define

I (F ) =

∫ t

0
F (x) · dx = lim

|π|→0

∑
i

[F (x(ti)) · x(ti, ti+1) +DF (x(ti))
∗
X(t,ti+1)]︸ ︷︷ ︸

R(π)

,

where π = {0 < t1 < · · · < tn < t} and |π| = maxi |ti+1 − ti|. Moreover,∣∣∣∣∣∣∣
∫ t

s
F (x) · dx− (F (x(s)) · x(s, t) +DF (x(s))∗︸ ︷︷ ︸

A(s)

X(s, t))

∣∣∣∣∣∣∣ ≤ c(α)‖F‖C2 [(x,X)]3α|t− s|3α.

Proof. Take a partition π = {s < t0 < · · · < tn−1 < tn < t = tn+1}. Pick some i, and
compare R(π) with R(π − {ti}):

R(π)−R(π − {ti}) = F (x(ti−1))x(ti−1, ti) + F (x(ti))x(ti, ti+1)

+A(ti−1)X(ti−1, ti) +A(ti)X(ti, ti+1)

− F (x(ti−1))x(ti−1, ti+1) +A(ti−1)X(ti−1, ti+1)

= y(ti−1, ti)x(ti, ti+1) +A(ti−1, ti)X(ti, ti+1)

−A(ti−1)x(ti−1, ti)⊗ x(ti, ti+1)

= [y(ti−1, ti)x(ti, ti+1)−A(ti−1)x(ti−1, ti)⊗ x(ti, ti+1)]

+A(ti−1, ti)X(ti, ti+1).

So we may estimate the error as

|R(π)| = |[y(ti−1, ti)x(ti, ti+1)−A(ti−1)x(ti−1, ti)⊗ x(ti, ti+1)] +A(ti−1, ti)X(ti, ti+1)|
≤ ‖F‖C2 |ti+1 − ti|3α[x]3α + ‖F‖C2 |ti+1 − ti−1|3α‖F‖C2 [X]2α.

Choose i so that |ti+1 − ti| ≤ 2(t− s)/n,

R(π)−R(π − {ti}) ≤ c0
|t− s|3α

n3α
23α.

Do this inductively to obtain

|R(π)−R(∅)| ≤ c0|t− s|3α.

From our proof, we can also deduce that R(π) converges as |π| → 0.
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6 Considerations for Integration Theories

6.1 Definition of Lyons’ integral

We are interested in pairs of the form x = (x,X), where x ∈ Cα (i.e. x : [0, 1] → R` is
Hölder of exponent α), and X : [0, T ]2 → R`×` (into the `× ` real matrices) such that

x(s, t) = x(t)− x(s), X(s, t) = X(s, u)X(u, t) + x(s, u)⊗ x(u, t),

which is Chen’s relation. We write

‖x‖α,2α = |x(0)|+ sup
s6=t

|x(t)− x(s)|
|t− s|︸ ︷︷ ︸
[x]α

+ sup
s 6=t

|X(s, t)|
|t− s|2α

.

We write Rα = {x = (x,X) : ‖x‖α,2α < ∞,Chen’s relation holds}. Last time, we proved
the following theorem.

Theorem 6.1. Assume α ∈ (1/3, 1/2]. If x ∈ Rα and F : R` → R` ∈ C2, then∫ t

0
F (x) · dx := lim

|π|→0
π={t0=0<t1<···<tn+1=t}

n∑
i=0

[F (x(ti)) · x(ti, ti+1) +DF (x(ti)) : X(ti, ti+1)]

here if A = [ai,j ] and B = [bi,j ], then A : B :=
∑

i,j ai,jbi,j, exists, and∣∣∣∣∫ t

s
F (x) · dx− (F (x(s)) · x(s, t) +DF (x(s)) : X(s, t))

∣∣∣∣ ≤ c0(α)‖F‖C2‖x‖2α,2α|t− s|3α.

The way to think about X(s, t) is

X(s, t) =

∫ t

s

∫ θ

s
dx(θ′)⊗ dx(θ).

6.2 Remarks on integration theories

Remark 6.1. Write Rα(x) = {X : (x,X) ∈ Rα}, with α > 1/3. Now if X,X′ ∈ Rα(x),
then W = X′ − X, and

W (s, u) +W (u, t) = W (s, t).

So if W (t) := W (0, t), then we can write W (s, t) = W (t)−W (s). Moreover,

sup
s 6=t

|W (t)−W (s)|
|t− s|2α

<∞.

So W ∈ C2α. Thus, if X0 ∈ Rα(x), then

Rα(x) = {(X0(s, t) +W (t)−W (s) : s, t ∈ [0, T ]) : W ∈ C2α}.

In particular, if α > 1/2, Rα(x) consists of one element.
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Remark 6.2. To generalize our theorem, we define the following function space: Given
x ∈ Cα, let G α(x) be the set of pairs (y, ŷ) with the following properties:

• y : [0, T ]→ Rd×`,

• y ∈ Cα (could be Cβ also),

• ŷ : [0, T ]→ Rd×`×`,

• ŷ ∈ Cα,

•
‖(y, ŷ)‖α,2α = [y]α + [ŷ]α + sup

s 6=t

|y(t)− y(s)− ŷ(s) : (x(t)− x(s))|
|t− s|2α

<∞.

For example, if F : R` → R` ∈ C2 and x : [0, T ]→ R`, then (y, ŷ) = (F (x), DF (x)) ∈ G (x).
We call G (x) the Gubinelli class of x.

With an identical proof we can show this: If x = (x,X) ∈ Rα and y = (y, ŷ) ∈ Gα(x),
then ∫ t

0
y · dx := lim

|π|→0
π={t0=0<t1<···<tn+1=t}

[∑
i

y(ti)x(ti, ti+1) + ŷ(ti) : X(ti, ti+1)

]
.

The analogue of the bound in the theorem also holds, provided that ‖F‖C2 is replaced with
‖y‖α,2α.

Remark 6.3. If α > 1/2, then ∫ t

0
y · dx =:

∫ t

0
y · dx

because in the above limit definition of the integral, the contribution from
∑

i ŷ(ti) :
(ti, ti+1) is 0, so we can drop it. If this is the case, we refer to it as a Young integral.

Remark 6.4. Suppose X0 ∈ Rα(x), and let W ∈ C2α with X(s, t) = X0(s, t)+W (t)−W (s).
Now ∫ t

0
(y, ŷ) · d(x,X) =

∫ t

0
(y, ŷ) · d(x,X0) +

∫ t

0
ŷ : dW︸ ︷︷ ︸

Young integral

.

Remark 6.5. We say x = (x,X) ∈ Rα
g , i.e. x is (weakly) geometric, if

X(s, t) + X∗(s, t) = x(s, t)⊗ x(s, t).

Equivalently, we can say

Xi,j(s, t) + Xj,i(s, t) = xi(s, t)xj(s, t),
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where Xi,j =
∫ t
s xi dxj − xi(s)(xj(t) − xj(s)). Hence, if Rα

g (x) = {X : (x,X) ∈ Rα
g }, then

the symmetric part of X is uniquely determined. Hence if X0 ∈ Rα
g , then

Rα
g (x) = {X0(s, t) +W (t)−W (s) : W ∈ C2α,W ∗ = −W}.

Now consider the corresponding integral:∫ t

0
F (x) · d(x,X) =

∫ t

0
F (x) · d(x,X0) +

∫ t

0
DF (x) : dW.

Example 6.1. Take any x = (x,X) ∈ Rα, and pick any 1-periodic function f : [0, 1]→ R`.
If yn(t) = n−1/2f(nt), then y→ 0. Now consider xn = x+yn

n→∞−−−→ x. Then one can show
that the norm is uniformly bounded. Define

Xn = X +

∫ t

s
(yn(θ)− yn(s))⊗ dyn(θ)︸ ︷︷ ︸

classical integral

→ X + (t− s)C,

where C is an antisymmetric matrix.

Remark 6.6. Start from (Rα, ‖ · ‖α,2α). Let us define

C∞ =

{
(x,X) : x ∈ C1,X is defined by X(s, t) =

∫ t

s
(x(θ)− x(s))⊗ dx(θ)

}
,

where
∫ t
s (x(θ)−x(s))⊗ dx(θ) is a classical integral. Write Rα

sg to be the closure of C∞ with
respect to ‖ · ‖α,2α. It is not hard to see3 Rsg ( Rα

g . This has to do with the fact that Cα
is not topologically separable. In fact, what is the closure of the set of smooth functions
with respect to ‖ · ‖α? The closure is exactly the set of x : [0, T ]→ Rd such that

lim
ε→0

sup
|s−t|<ε
s 6=t

|x(t)− x(s)|
|t− s|α︸ ︷︷ ︸

ψ(ε)

= 0.

3Not my words.
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7 Gubinelli’s Sewing Lemma and Tensor Algebra for Incre-
ments

7.1 Gubinelli’s sewing lemma

The method we have used so far can be used to show that if x(t) = (f(t), g(t)) with
f ∈ Cα, g ∈ Cβ, then there exists a unique candidate for

∫ t
0 f dg (Young’s theorem), provided

that α + β > 1. (The general case α + β ≤ 1 with f, g : Rd → R will be treated later.)
More precisely, we can find a β-Hölder h : [0, T ]→ R such that h(0) = 0, and

|h(t)− h(s)− f(s)(g(t)− g(s))︸ ︷︷ ︸
=:A(s,t)

| ≤ c0|t− s|α+β.

In fact, Gubinelli’s sewing lemma gives the sufficient (even necessary) conditions on A that
would guarantee the existence of such an h

Definition 7.1. Given A : [0, T ]2 → R and γ > 0, we say A is γ-coherent if

|A(s, t)−A(s, u)−A(u, t)| ≤ c0|t− s|1+γ

for all s, u, t satisfying 0 ≤ s ≤ u ≤ t ≤ T .

Lemma 7.1 (Sewing lemma, Gubinelli). If A is γ-coherent, then

h(t) = lim
|π|→0

n∑
i=1

A(ti, ti+1)

exists, where π = {0 = t0 < t1 < · · · < tn < tn+1 = t} is a partition of the interval [0, t].

Proof. If π = {s = t0 < t1 < · · · < tn < tn+1 = t} is a partition of [s, t] and if I(π) =∑n
i=1A(ti, ti+1), then

I(π)− I(π \ {ti}) = |A(ti−1, ti) +A(ti, ti+1)−A(ti−1, ti−1)| ≤ c0|ti+1 − ti−1|1+γ .

We may choose ti so that |ti+1 − ti| ≤ 2
n |t − s|. We can repeat our previous argument to

show that the limit exists and that

|h(t)− h(s)−A(s, t)| ≤ c|t− s|1+γ , where c =

∞∑
n=1

(
2

n

)1+γ

.

Remark 7.1. Observe that if A(s, t) = f(s)(g(t)− g(s)), then

|A(s, t)−A(s, u)−A(u, t)| = |f(s)(g(t)− f(s))− f(s)(g(u)− g(s))− f(u)(g(t)− g(u))|
= |(f(s)− f(u))(g(t)− g(u))|
≤ [f ]α[g]β|t− s|α+β.
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Note that our candidate h′ represents fg′, and we are comparing fg′ with f(s)g′:

|h(t)− h(s)− f(s)(g(t)− g(s))| = |(h′ − f(s)g′)(1[s,t])| ≤ c0|t− s|1+γ .

Perhaps we set Fs = f(s)g′, and the γ-coherence condition requires some kind of regularity
of the map s 7→ Fs.

A(s, t)−A(s, u)−A(u, t) = Fs(1[s,t])︸ ︷︷ ︸
Fs(1[s,u]+1[u,t])

−Fs(1[s,u])− Fu(1[u,t])

= Fs(1[u,t])− Fu(1[u,t])

= (Fs − Fu)(1[u,t]).

Perhaps we should write ϕ = 1[0,1] and ϕλx(θ) := λ−1ϕ( θ−xλ ) = λ−1
1[x,x+λ], which

approximates the δ distribution at x. Then (Fs − Fu)(1[u,t]) = λ(Fs − Fu)(ϕλu), where
λ = t− u. Gubinelli’s condition means that

|(Fs − Fu)(ϕλu)| ≤ λ−1(|s− u|+ λ)1+γ .

This condition is sharp.

7.2 Tensor algebra structure for increments

So far, for a rough path, we need a vector x(s, t) = x(t) − x(s) and a matrix X(s, t). For
α > 1/k, we are dealing with a tensor algebra that is truncated at order k. For k = 3, we
cut it at 3 and only deal with 1 and 2 tensors. Consider the vector space V = R⊕R`⊕R`×`
with elements (λ, v,A) (which we may write as λ+v+A). We equip V with a multiplication
(tensor product)

(λ+ v +A)⊗ (λ′ + v′ +A′) = (λa′) + (λv′ + λ′v) + (λA′ + λ′A+ v ⊗ v′).

Note that if G = {1 + v + A : v ∈ R`, A ∈ R`×`}, then G is closed with respect to ⊗. In
fact G is a group. Indeed,

(1 + v +A)−1 = 1− (v +A) + (v +A)⊗ (v +A) + · · ·
= 1− (v +A) + v ⊗ v
= 1− v + (v ⊗ v −A).

Let’s take a rough path: x : [0, T ]→ R`, X : [0, T ]2 → R`×`. Given such a path, set

x(s, t) = 1 + x(t)− x(s)︸ ︷︷ ︸
x(s,t)

+X(s, t),
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so x : [0, T ]2 → G. Recall Chen’s relation,

X(s, t) = X(s, u) + X(u, t) + x(s, u)⊗ x(u, t).

Observe that

x(s, u)⊗ x(u, t) = (1 + x(s, u) + X(s, u))⊗ (1 + x(u, t) + X(u, t))

= 1 + x(s, t) + (X(s, t) + X(s, u)) + (x(s, u)⊗ x(u, t))

= x(s, t).

Thus, Chen’s relation is equivalent to saying that x(s, t) = x(s, u)⊗x(u, t). This says that
with respect to ⊗, x(s, t) is an increment. We can also see that x(s, t) = x(0, s)⊗ x(s, t),
which gives

x(s, t) = x(0, s)−1 ⊗ x(0, t)︸ ︷︷ ︸
x(t)

.

In summary, Rα is isomorphic to the set of paths x : [0, T ]→ G and, by choosing a suitable
metric on G, that are left-invariant with x being α-Hölder with respect to this metric:

JxKα = sup
s 6=t

dG(x(t), x(s))

|t− s|α
<∞.

How about Rα
g ? Even in this case, we get the set of α-Hölder paths x : [0, T ] → Ĝ,

where Ĝ is a subgroup of G. Remember that

Rα
g = {(x,X) ∈ Rα : X(s, t) + X∗(s, t) = x(s, t)⊗ x(s, t)}

=

{
(x,X) ∈ Rα : X(s, t) =

1

2
x(s, t)⊗ x(s, t) + C(s, d), C∗ + C = 0

}
.

This suggests that
Ĝ = {1 + v + (1

2v ⊗ v + C) : C∗ + C = 0}.
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8 Solving ODEs Via Rough Integration

8.1 Solving for the Itô-Lyons map

We now turn to the ODE of the form

ẏ = σ(y)ẋ, y(0) = y0,

where x ∈ Cα and σ is sufficiently smooth. Here, x : [0, T ] → R`, σ : Rd → Rd×`, and
y : [0, T ]→ Rd. We find a unique solution to this ODE, provided that we choose a suitable
X so that x = (x,X) ∈ Rα. The solution we come up with, y(·) = I (y0,x) is continuous
(even locally Lipschitz) in y0 and x. I is known as the Itô-Lyons map. Let’s make some
preparations for this construction. Needless to say that we want to interpret this ODE as

y(t) = y0 +

∫ t

0
σ(y(θ)) dx(θ).

Though if α < 1/2 (say α ∈ (1/3, 1/2]), we need to lift both σ(y) and x to (σ(y), σ̂), (x,X)
with (σ(y), σ̂) ∈ G α(x), (x,X) ∈ Rα.

Recall that G α(x) consists of pairs (z, ẑ) (where we intuitively think of ẑ as a “deriva-
tive” of z with respect to x) such that z, ẑ ∈ Cα and

J(z, ẑ)K2α := sup
s6=t

|z(t)− z(s)− ẑ(s)(x(t)− x(s))|
|t− s|2α

<∞.

Indeed, from the integral formulation of this ODE, we expect that if y solves the equation,
then (y, σ(y)) ∈ G α(x).

Theorem 8.1. Let x = (x,X) ∈ Rα for α ∈ (1/3, 1/2], and assume σ ∈ C3
b (bounded

derivatives). Then for each y0, there exists a path y ∈ Cα such that y(0) = y0, (y, σ(y)) ∈
G α(x), and

y(t) = y0 +

∫ t

0
(σ(y), σ̂(y))︸ ︷︷ ︸

σ

· d (x,X)︸ ︷︷ ︸
x

.

Here, σ̂(y) = [σ̂ijk(y)] with

σ̂ijk(y) =
d∑
r=1

σi,jyr (y)σrk(y).

Moreover, I (y0,x) is Lipschitz with Lipschitz norm calculated in terms of ‖σ‖C3 and
‖x‖α,2α.

The idea is to start from y = (y, ŷ) and set

Fx(ŷ)(t) =

(
y0 +

∫ ·
0

(σ(y), σ̃(y, ŷ)) · d(x,X), σ(y)

)
,
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where σ̃(y, ŷ) = [σ̃ijk(y, ŷ)], where

σ̃ijk(y, ŷ) =
d∑
r=1

σijyr(y)ŷrk.

If ŷ is a fixed point of F , then we are done because then the Gubinelli derivative of such
y must be σ(y).

8.2 Breakdown of the map F

Let’s understand F better: Throughout, x = (x,X) ∈ Rα is fixed.

Step 1: Recall that for z = (x, ẑ) ∈ G α(x), we can define w(t) =
∫ t

0 z dx, which satisfies

|w(t)− w(s)− z(s)(x(t)− x(s))− ẑ(s)X(s, t)| ≤ c0([z]α[x]α + [ẑ]α[X]2α)|t− s|3α.

This suggests Fx : G α(x)→ G α(x) by F0
x(z, ẑ) = (w, z). In fact, F0 is linear and

JF0
x(y)Kα,2α ≤ c0[x]α,2α[y]α,2α.

Here is the short proof of this:

Proof.

|w(t)− w(s)− z(s)(x(t)− x(s))| ≤ ‖ẑ‖L∞ [X]2α|t− s|2α

+ c0(what we had before)|t− s|3α.

Step 2: Define F1
x : Gα(x)→ Gα(x) with F1

x(z, ẑ) = (σ(z), Dσ(z)ẑ), where

(Dσ(z)ẑ)ijk =
d∑
r=1

σijzr ẑ
rk

and F1 is bounded if σ ∈ C2. Here is the proof:

Proof. Using a Taylor expansion for σ,

|σ(z(t))− σ(z(s))−Dσ(z(s))ẑ(s)x(s, t)|
≤ |Dσ(z(s))(z(t)− z(s))−Dσ(z(s))ẑ(s)x(s, t)|+ ‖D2σ‖L∞ [z]α|t− s|2α

≤ ‖Dσ‖L∞ [z]α,2α|t− s|2α + ‖D2σ‖L∞ [z]α|t− s|2α

≤ ‖σ‖C2 [z]α,2α|t− s|2α.

So we get that
JF1

x(z)Kα,2α ≤ ‖σ‖C2JzKα,2α.

28



Step 3: Next, we define F : G α(x)→ G α(x), as F = F0 ◦ F1, so we send

(y, ŷ) 7→ (σ(y), Dσ(y)ŷ) 7→
(∫ ·

0
(σσ̂) · d(x,X), σ(y)

)
.

Then set

F ′(y, ŷ) =

(
y0 +

∫ ·
0

(σ, σ̂) · d(x,X), σ(y)

)
.

We need to turn F ′ into a contraction so that it has a fixed point. We achieve this
by choosing a sufficiently small interval [0, t0), and finding a nice invariant subset of
G α(x). As we will see, t0 depends on ‖σ‖C3 , so we can repeat the same construction
on [t0, 2t0), . . . .

How can this be done? First, switch from G α(x) to Ĝ α(x) = {(y, ŷ) : y(0) =
y0, ŷ(0) = σ(y0)}. This way, we don’t need to worry about the difference be-
tween a norm and a seminorm; this contraction takes place in a metric space,
which is good enough for our purposes. Observe that (a, â) ∈ Ĝ α(x), where a(t) =
y0 + σ(y0)(x(t)− x(0)) and â(t) = σ(y0). Observe that

a(t)− a(s)︸ ︷︷ ︸
σ(y0)(x(t)−x(s))

− â(s)︸︷︷︸
σ(y0)

(x(t)− x(s)) = 0.

Now set B = {(y, ŷ) ∈ Ĝ α(x) : J(y − a, ŷ − â)Kα,2α ≤ 1}. The trick is to construct
something in a rougher space and then show that it is as regular as you want. We
will continue this next time.
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10 Kolmogorov’s Continuity Theorem for Rough Paths and
Candidates for the Lift of Brownian Motion

10.1 Kolmogorov’s continuity theorem for rough paths

Recall that if A(x) =
∫ T

0

∫ T
0 ψ( |x(t)−x(s)|

p(|t−s|) ) dt ds with ψ, p : [0,∞) → [0,∞) increasing,

ψ(0) = p(0) = 0 and ψ(∞) =∞, then

|x(t)− x(s)| ≤ 8

∫ |t−s|
0

ψ−1

(
4A

θ2

)
p(dθ).

For example, if ψ(r) = rq and p(r) = rα+1/q with q > 1 and α > 0, then

|x(t)− x(s)| ≤ c0(q, α)A(x)1/q|t− s|α−1/q.

In summary, if

A(x) =

∫ T

0

∫ T

0

|x(t)− x(s)|q

|t− s|αq+1
dt ds,

then x is Hölder continuous of exponent α − 1/q. In particular, if x is randomly selected
according to a probability measure P and E[|x(t)− x(s)|q] ≤ c0|t− s|βq, then

E[A(x)] ≤ c0

∫ T

0

∫ T

0
|t− s|βq−αq−1 dt ds <∞

if β > α. In summary, if we have this Lq bound on x(t)−x(s), then x is Hölder of exponent
γ ∈ (0, β − 1/q). This is also true for x : [0, T ]d → R`: If (E[|x(t)− x(s)|q])1/q ≤ c0|t− s|β,
then x is Hölder of exponent γ ∈ (0, β − d/q).

Here is a version of Kolmogorov’s continuity theorem that involves rough paths:

Theorem 10.1. Let x : [0, T ]→ R` and its lift X : [0, T ]2 → R`×` satisfy Chen’s relation:

X(s, t) = X(s, u) + X(u, t) + x(s, u)⊗ x(u, t).

Let q ≥ 2, β > 1/q, and assume that there exists a constant c0 such that (E[|x(s, t)|q])1/q ≤
c0|t− s|β and (E[(

√
|X(s, t)|)q])1/q ≤ c0|t− s|β. Then there is a version of x = (x,X) such

that

E

[(
sup
s 6=t

x(s, t)

|t− s|α−1/q

)q
+

(
sup
s 6=t

√
|X(s, t)|

|t− s|α−1/q

)q]
<∞,

provided that α < β.

Proof. Without loss of generality, assume T = 1. Take a dyadic approximation of [0, 1]:
set Dn = {j/2n : 0, 1, . . . , 2n}, and let D =

⋃∞
n=1Dn, which is dense in [0, 1]. Set

An = sup
t∈Dn

|x(t+ 2−n)− x(t)| = sup
t∈Dn

|x(t, t+ 2−n)|, Bn = sup
t∈Dn

|X(t, t+ 2−n)|
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Let s, t ∈ D with s < t, and pick m so that 1/2m+1 < |s− t| ≤ 1/2m. Pick θ ∈ [s, t] ∩Dm,
which exists because |s− t| ≥ 1/2m. Then

|x(t)− x(s)| ≤ |x(t)− x(θ)|+ |x(θ)− x(s)|.

Now write the dyadic expansion t − θ = a0
2m + a1

2m+1 + · · · , so |x(t) − x(θ)| ≤
∑

n≥mAn.
Doing the same with the second term,

≤ 2
∑
n≥m

An

Hence,

|x(t)− x(s)|
|t− s|γ

≤ |x(t)− x(s)|2(m+1)γ

≤ 2γ+1
∑
n≥m

An2mγ

≤ 2γ+1
∑
n≥m

An2nγ .

So we get the bound

sup
|x(t)− x(s)|
|t− s|γ

≤ 2γ+1
∞∑
n=0

An2nγ .

We want to get a bound on the Lq norm of this:(
E
[(

sup
|x(t)− x(s)|
|t− s|γ

)q])1/q

≤ 2γ+1
∑
n

(E[Aqn])1/q2nγ .

On the other hand,

Aqn = sup
t∈Dn

|x(t+ 2−n)− x(t)|q ≤
∑
t∈Dn

|x(t+ 2−n)− x(t)|q,

and taking expectations gives

E[Aqn] ≤
∑
t∈Dn

E[|x(t+ 2−n)− x(t)|q]

≤ cq02n2−nβq.

This gives the Lq norm bound

(E[Aqn])1/q ≤ c02−n(β−1/q).
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Hence, (
E
[(

sup
|x(t)− x(s)|
|t− s|γ

)q])1/q

≤ c02γ+1
∑
n

2−n(β−1/q−γ) <∞

if γ < β − 1/q.
As for X(s, t), we do likewise. Let s, t, θ be as above and use

X(s, t) = X(s, θ) + X(θ, t) + x(s, θ)⊗ x(θ, t).

We get

|X(s, t)| ≤ 2γ+1
∑
n

Bn2nγ +

(∑
n

Ane
nγ

)2

,

and we can repeat the above argument.
This would give us the regularity of x (resp. X) restricted to D (resp. D2). Then set

x̃(t) = limtn→t
tn∈D

x(tn), and we can show that x = x̃ almost surely:

E[|x(t)− x̃(t)|] = E
[

lim
n→∞

|x(t)− x(tn)
]

≤ lim inf E[|x(t)− x(tn)|]︸ ︷︷ ︸
≤c0|t−tn|β

= 0.

10.2 Candidates for the lift of Brownian motion

We now offer two candidates for the lift of an `-dimensional Brownian motion, namely Itô
and Stratanovich. Define

BItô(s, t) = A(s, t)−B(s)(B(t)−B(s)),

with
A(s, t) = lim

n→∞

∑
ti dyadic in [s, t]

B(ti)(B(ti+1)−B(t)).

Define the Stratanovich integral similarly except with

AStrat(s, t) = lim
n→∞

∑
ti dyadic in [s, t]

B(ti) +B(ti+1)

2
(B(ti+1)−B(t)).

For the sake of definiteness, assume s = 0. For diagonal terms, we have

AItô
r,r = lim

n→∞

∑
{ti}=Dn

Br(ti)(Br(ti+1)−Br(ti)),
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AStrat
r,r = lim

n→∞

∑
{ti}=Dn

Br(ti) +Br(ti+1)

2
(Br(ti+1)−Br(ti)) =

B(t)2 −B(s)2

2
.

Observe that

(AStrat
r,r −AItô

r,r )(s, t) = lim
∑
i

1

2
(Br(ti+1)−Br(ti))2 =

t− s
2

,

where the last step is a theorem of Lévy. (The proof is to show that E[
∑

(Br(ti+1) −
Br(ti))

2 − (ti+1 − ti)]2 → 0 as n→∞.) Hence,

AItô
r,r (s, t) =

B(t)2 −B(s)2 − (t− s)
2

.

It remains to evaluate Ar,r′/A
Strat
r,r′ . Basically, we have 2 independent, one dimensional

standard Brownian motions, sayB andB′, and we want to calculate lim
∑

iB
′(ti)(B(ti+1)−

B(ti)). Let

Bn(t) =

bt2nc−1∑
i=0

B′(ti)B(ti, ti+1).

First assume t = 1, and let us examine

Bn+1 − Bn =
∑
i

(B′(ti)B(tisi) +B′(si)B(si, ti+1)−B′(ti)B(ti, ti+1)),

where si is the midpoint of [ti, ti+1].

=
∑
i

B′(ti, si)B(si, ti+1).

So

E[(Bn+1 − Bn)2] =
∑
i

E[B′(ti, si)
2B(si, ti+1)2]

=
∑
i

2−2(n+1)

= 2−n−2.

Hence, Bn is Cauchy in L2.
It turns out that Bn as a function of time is a martingale, and we can take advantage

of this to have a better convergence. First, we set Ft to be the σ-algebra generated by
(B(s) : s ∈ [0, t]), and we say t 7→M(t) is a martingale if E[M(t) | F(s)] = M(s) for s < t.
Using Doob’s inequality, we can have convergence that is uniform in t:(

E

[∣∣∣∣∣ sup
t∈[0,T ]

M(t)

∣∣∣∣∣
p])1/p

≤ p

p− 1
E[|M(T )|p], p > 1.
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11 Gaussian Inequalities and Markov Techniques for Lifts of
Brownian Motion

11.1 Gaussian-type inequalities

For many stochastic processes of interest, we either can use the Markov property or take
advantage of the Gaussian distribution of the realizations. In the former case, many mar-
tingales become available, and in the latter case, many Gaussian-type inequalities can be
used.

For example, if x : [0, T ]→ Rd is a Gaussian process that is centered (i.e. E[x(t)] = 0 for
all t), the process is determined by its correlation, E[x(t)⊗ x(s)] = R(s, t). For simplicity,
let us assume that x = (x1, . . . , xd) with xi, xj independent for i 6= j. Then R(s, t) is
diagonal.

Example 11.1. If Xi have the same law for i = 1, . . . , d, then R(s, t) = C(s, t)I, where C
is scalar-valued, and I is the identity matrix. Also,

E[|xi(t)− xi(s)|2] = C(t, t) + C(s, s)− 2C(s, t),

and if
E[|xi(t)− xi(s)|2] ≤ c0|t− s|2α,

then we can use Kolmogorov’s continuity theorem to assert that x ∈ Cβ for every β < α.
Indeed, this estimate would imply that

(E[|xi(t)− xi(s)|2n])1/2n ≤ an(E[|xi(t)− xi(s)|2])1/2

≤
√
c0an|t− s|α,

and we can use Kolmogorov’s continuity theorem to obtain control on [xi]α−1/(2n)−ε; this
holds for any n. To see this, observe that if X is normal with mean 0 and E[X2] = A, then

E[etX ] = e
t2

2
A, so that

E[X2n] =
(2n)!

n!2n
(E[X2])n.

The moral is that in the Gaussian case, we can bound higher moments in terms of the
second moment. The good news is that something similar is also true for martingales.

Rough path theory can be carried out for any Gaussian process, provided that E[|xi(t)−
xi(s)|2] ≤ c0|t− s|2α for some α > 0. For example, we can consider a fractional Brownian
motion that is specified by the requirement that E[|xi(t)− xi(s)|2] = |t− s|2H , where H is
known as the Hurst index.
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11.2 Brownian motion as a Markov process

How about the Brownian motion as a Markov process? Let B = (B1, . . . , Bd), where the
Bis are independent standard Brownian motion. As we discussed last time, we can come
up with a candidate for∫ t

s
Bi dBj = lim

n→∞

∑
k:tnk∈[s,t]

Bi(t
n
k)Bj(t

n
k , t

n
k+1), where Dn = {tnk = k/2n : k ∈ Z}.

This is in L2(P), where P is Wiener measure, a probability measure on C([0, T ];Rd). We
had another candidate that we will denote∫ t

s
Bi ◦ dBj := lim

n→∞

∑
k:tnk∈[s,t]

Bi(t
n
k) +Bi(t

n
k+1)

2
Bk(t

n
k , t

n
k+1).

For diagonal terms, we have explicit formulae, namely∫ t

s
Bi dBi =

Bi(t)
2 −Bi(s)2

2
− t− s

2
,

∫ t

s
Bi ◦ dBi =

Bi(t)
2 −Bi(s)2

2
.

Though when i 6= j, we have
∫ t
s Bi dBj =

∫ t
s Bi ◦ dBj because∫ t

s
Bi ◦ dBj −

∫ t

s
Bi dBj = lim

n→∞

1

2

∑
tnk∈[s,t]

Bi(t
n
k , t

n
k+1)Bj(t

n
k , t

n
k+1),

and

E

 ∑
tnk∈[s,t]

Bi(t
n
k , t

n
k+1)Bj(t

n
k , t

n
k+1)

2 =
∑

tnk∈[s,t]

E[Bi(t
n
k , t

n
k+1)2]E[Bj(t

n
k , t

n
k+1)2]

≈ 2n(t− s)2−n2−n

→ 0.

In summary,

BItô(s, t) = BStrat(s, t)− 1

2
(t− s)I,

where I is the identity matrix.
However, we need to show that (B,BItô) ∈ Rα for any α < 1/2. We have done with

the B part. We get our estimate for BItô using the fact that Mi,j(t) =
∫ t

0 Bi dBj is a
martingale. We write Ft for the σ-algebra generated by (B(θ) : θ ∈ [0, t]). Then M(t) is a
martingale if E[M(t) | Fs] = M(s), or E[M(t)−M(s) | Fs] = 0.
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For example, B(t) itself is a martingale, and observe that E[
∫ t
s Bi dBj | Fs] = 0. Indeed,

E

 ∑
k/2n∈[s,t]

Bi(t
n
k)Bk(t

n
k , t

n
k+1) | Fs

 = E

 ∑
k/2n∈[s,t]

Bi(s)Bj(t
n
k , t

n
k+1) | Fs


≈ E[Bi(s)Bj(s, t)]

= 0.

First, we can show that

E[Mi,j(t)
2] = E

[∫ t

0
Bi(s)

2 ds

]
,

which yields

E[(BItô
i,j )2] = E

[(∫ t

s
(Bi(θ)−Bi(s)) dBj(θ)

)2
]

= E
[∫ t

s
(Bi(θ)−Bi(s))2 dθ

]
=

∫ t

s
(θ − s) dθ

=
(t− s)2

2
.

Here, if we write Ai,j(t) =
∫ t

0 Bi(θ)
2 dθ, then Mi,j(t)

2 − Ai,j(t) is again a martingale.4 We
have the following fundamental inequality in this context that is due to Burkholder-Davis-
Gundy (Doob’s inequality):

Lemma 11.1. If M and M2−〈M〉 = M2− [M ] = M2−A are martingales with M(0) = 0,
define M∗(t) = sups∈[0,t] |M(s)|. Then

E[M∗(t)q] ≤ cq E[Aq/2].

Now, for our example,

E[|BItô(s, t)|q] ≤ cE

[∣∣∣∣∫ t

s
Bi(s, θ)

2 dθ

∣∣∣∣q/2
]

≤ cE

[(
sup
θ∈[s,t]

|Bi(s, θ)|

)q]
|t− s|q/2

4This is not a coincidence. For any such martingale, if we square it, there is a monotone function we
can subtract to get another martingale.
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≤ c′|t− s|αq|t− s|q/2.

So
(E[|BItô(s, t)|q])1/q ≤ c|t− s|α+1/2.
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12 Exponential Martingale Bounds and Geometricity of the
Stratonovich Integral

12.1 Exponential martingale methods for bounding Brownian motion
increments

Our purpose is showing that our candidates

B(s, t) = lim
n→∞

∑
tni ∈[s,t]

B(tni )⊗B(tni , t
n
i+1)

︸ ︷︷ ︸
Bn(s,t)

−B(s)⊗B(s, t),

B̂(s, t) = lim
n→∞

∑
tni ∈[s,t]

B(tni ) +B(tni+1)

2
⊗B(tni , t

n
i+1)

︸ ︷︷ ︸
B̂n(s,t)

−B(s)⊗B(s, t)

Last time, we worked out the “quadratic variation” of Bn and applied the Burkholder-
Davis-Gundy inequality to get the desired bound. Alternatively, we can use the so-
called exponential martingale to get our bounds. The philosophy is that if we have
a martingale M(t) and we want a bound, we need to control a modulus of continuity
sups 6=t,|s−t|<δ |M(t)−M(s)|. Recall that if X is a centered Gaussian, E[eλX ] = e(λ2/2)E[X2].

Proposition 12.1. If we set Xi = B(tni )−B(s), then

E

[
exp

(
λ

r−1∑
i=k

XiB(tni , t
n
i+1)− λ2

2
X2
i (tni+1 − tni )

)]
= 1.

Proof.

LHS = E

[
exp

(
λ

r−2∑
i=k

XiB(tni , t
n
i+1)− λ2

2
X2
i (tni+1 − ti)

)
eλXr−1B(tnr−1,t

n
r )−λ

2

2
X2
r−1(tnr−rnr−1)

]
Condition on the past up to time tnr−1. The term on the right just becomes 1 because
B(tnr−1, t

n
r ) is the only randomness.

= E

[
exp

(
λ

r−2∑
i=k

XiB(tni , t
n
i+1)− λ2

2
X2
i (tni+1 − ti)

)]
We can do the same thing, picking off one term at a time

= · · ·
= 1.
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Remark 12.1. We may write this as

E[eλMn−λ
2

2
Zn ] = 1,

where Mn is a martingale, and Zn is the quadratic variation of Mn.

We wish to expand this expression in λ:

1 = E

[ ∞∑
m=0

Km(Mn, Zn)
λm

m!

]
.

From this we want to deduce that K0 = 1 and E[Km(Mn, Zn)] = 0 for all m ≥ 1. This
gives nice control on Mn in terms of its quadratic variation Zn. Indeed, use the expansion:

etx−
t2

2 =

∞∑
m=0

(He)m(x)
tm

m!
,

Where (He)m(x) is the m-th Hermite polynomial. Hermite polynomials satisfy the recur-
sive identity (He)m+1(x) = x(He)m(x) −m(He)m−1(x). We also have (He)m(x) = 1 and
(He)1(x) = x, so it is possible to show that (He)m(0) = 0 if m is odd. We can also show
that (He)m has even powers if m is even and odd powers if m is odd. Moreover, we have
the expansion (setting t = λ

√
Z and x = M√

Z
)

eλM−
λ2

2
Z =

∞∑
m=0

Km(M,Z)
λm

m!
, Km(M,Z) = (He)m

(
M√
Z

)
(
√
Z)m.

Observe that

K2m(M,Z) = M2m + cm1 M
2m−2Z + · · ·+ cmm−1M

2Zm−1 + cmmZ
m.

From this an E[K2m(M,Z)] = 0, we learn that

E[M2m] ≤ −
m∑
i=1

cmi E[M2m−2iZi].

Let’s Schwarz this!5 Use the weighted Schwarz inequality, ab ≤ (εa)p

p + (b/ε)q

q to write

E[M2m−2iZi] ≤ 2m− 2i

2m
(εM2m−2i)2m/(2m−2i) + (Zi/ε)m/i

i

m

=

(
1− i

m

)
εm/(m−i)M2m +

(
1

ε

)m/i i
m
Zm.

5Maybe we shouldn’t be using Schwarz as a verb, but this is how verbs are created.
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From this, we deduce
E[M2m] ≤ cm E[Zm].

In summary, if

M = Mn =
∑

tni ∈[s,t]

(Bj(t
n
i )−Bj(s))Bk(tni , tni+1), B = (B1, . . . , B`),

then
E[Mn] ≤ cm E[Zmn ],

where
Zn =

∑
tni

Bj(s, t
n
i )2(tni+1 − tni ).

Recall that if α ∈ (0, 1/2) and if

C(B) = sup
s 6=t

s,t∈[0,T ]

|B(s, t)|
|t− s|α

,

then E[C(B)q] <∞ for every q ≥ 1 (and in fact even E[ec0C(B)] <∞). Then

E[Zmn ] ≤ E[C(B)m|t− s|2αm+m] ≤ c′m|t− s|2αm+m.

As a result, (
E[M2m

n ]
)1/(4m) ≤ c′mcm|t− s|(2α+1)/4.

In other words,
‖
√
Mn‖L4m(P) ≤ c|t− s|(2α+1)/4,

and by Kolmogorov’s theorem,

E

 sup
s 6=t

s,t∈[0,T ]

|
√
Mn(s, t)|
|t− s|γ

 <∞,
provided that γ ∈ (0, 2α+1

4 − 1
4m). By choosing m large and α close to 1/2, we can get

any γ ∈ (0, 1/2). Thus, we do have a rough path (B,B) in Rγ with γ ∈ (0, 1/2). Since
B̂(s, t) = B(s, t)− t−s

2 I, the same is true for B̂.
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12.2 Geometricity of the Stratonovich lift

We now claim that B̂ is geometric and that a smooth approximation of B would lead to the
Stratonovich integration. Recall that we want to solve an equation like ẏ = b(y) + σ(y)Ḃ;
we have two candidates for the integrals in the corresponding integral equation, as well.

If we replace B by a smooth approximation Bε
ε→0−−−→ B, then we can solve the equation

ẏε = bε(y) + σε(y)Ḃε classically. Then limε→0 yε = y, so

ẏ = b(y) + σ(y)
d

dt
B̂.

Thus, it will be the Stratonovich integral, not the Itô integral. Note that the regularization
should be independent of the path.

To explain this, let us observe that if B is a Brownian motion and B(n) is the linear
interpolation

B(n)(t) =
∞∑
i=0

1[tni ,t
n
i+1](t) ·

[
t− tni
tni+1 − tni

B(tni+1) +
tni+1 − t
tni+1 − tni

B(tni )

]
,

then ∫ t

s
B(n)(θ)⊗ dB(n)(θ) =

∑
tni ∈[s,t]

∫ tni+1

tni

B(n)(θ)⊗ dB(n)(θ)

=
∑

tni ∈[s,t]

(tni+1 − tni )
B(tni ) +B(tni+1)

2
⊗
B(tni , t

n
i+1)

tni+1 − tni

= Stratonovich approximation.

So for α ∈ (0, 1/2), (
B(n),

∫
Bn ⊗ dB(n)

)
Rα

−−→ (B, B̂)

because we already know the L2-convergence, and we have established a uniform bound
on Rα of the approximation. Hence, we have convergence in Rβ for β < α.
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Remark 12.2. We can have the following probabilistic interpretation for our approxi-
mation that offers another proof of the L2-convergence. Namely, if Fn is the σ-algebra
generated by (B(tni ) : i = 0, 1, 2, . . . ), then B(n) = E[B | Fn]. Then B(n) → B follows from
the celebrated Doob’s martingale convergence theorem.
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13 Making the Jump From Stochastic ODEs to PDEs

13.1 Main results thus far for solving stochastic ODEs

Here are two main results that we have established so far:

1. The “ODE” {
ẏ = σ(y)ẋ

y(0) = y0

has a solution that is stable with respect to its input, provided we use the rough-path
interpretation for the integrals:

y(t) = y0 +

∫ t

0
(σ(y), σ̂) d(x,X)

with σ̂ = Dσ(y)σ(y).

Moreover, y is a fixed point of the operator

I (y,x) = y0 +

∫ t

0
(σ(y)Dσ(y)ŷ) dx.

Using our bounds for the integral, the operator I is bounded linear in x and locally
Lipschitz in y, and we learn that the solution X(y0,x) is continuous.

2. If B denotes the standard Brownian motion, then we have two rather natural can-
didates for its (random) lift, namely (B,B) (Itô) and (B, B̂) (Stratonovich) in Rα

for any α ∈ (0, 1/2). Note that our candidate (B(·),B(·, · ;B)) is in L2(P) with P
representing the Wiener measure, though B as a function of B is only measurable.

In particular, we may approximate B by some nice function, say B(n), and solve{
ẏ = σ(y)Ḃ(n)

y(0) = y0.

Then limn→∞ yn = y, where y solves

ẏ = σ(y)
˙̂B.

Indeed, if for B(n), we choose the linear interpolation of B using dyadic points Dn =
{i/2n : i ∈ Z} and consider (B(n),B(n)) by

B̂(n)(s, t) =

∫ t

s
B(n) ⊗ Ḃ(n)(θ) dθ,
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then as we discussed last time, B(n)(s, t) is simply the Stratonovich approximation.
Hence, in the L2 sense, B(n) → B̂.

We also know that supn ‖[B(n), B̂(n)]α,2α‖Lq(P) <∞. As a result, if we define B(n) =

(B(n), B̂(n)) and B̂ = (B, B̂) and regard it as a function B, we can show that for
P-almost all choices of B,

dα(B(n), B̂)→ 0,

where dα is the distance with respect to [·]α,2α.

In summary, we managed to do Stochastic calculus in two steps:

B (B,C) “ẏ = σ(y) ddt(B,B)”measurable continuous

Now we want to carry out the program for PDEs.

13.2 Preliminaries for Stochastic PDEs

We start with some notation. We have ϕ : Rd → R or ϕ : D → R with some open subset
D ⊆ Rd. We will use

‖ϕ‖L∞ = ‖ϕ‖∞ = sup
x
|ϕ(x)|, ‖ϕ‖L∞(D) = sup

x∈D
|ϕ(x)|

to denote the L∞ norm on Rd and D, respectively. Given k = (k1, . . . , kd) ∈ Nd0, we define

∂k(ϕ) = ∂kdxd · · · ∂
k1
x1
ϕ, |k| = k1 + · · ·+ kd.

We write Cr for the set of functions ϕ for which ∂k exists and is continuous for any k with
|k| ≤ r. And

‖ϕ‖Cr =
∑
|k|≤r

‖∂kϕ‖L∞ .

We write D for the set of smooth functions of compact support, and if K is a compact
subset of Rd, then D(K) means the set of ϕ ∈ D with suppϕ ⊆ K. By D′, we mean the
set of linear functionals T : D → R which are linear and satisfy

|T (ϕ)| ≤ cK‖ϕ‖CrK

for some constant cK and index rK for every ϕ ∈ D(K). Here, rK is called the order of
the distribution.

Example 13.1. A 0-th order distribution would be a measure by the Riesz representation
theorem.
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Next, we wish to discuss Cα(Rd) (or Cαloc(Rd)) for α ∈ R. Given a (test) function
ϕ : Rd → R, we define

ϕδa(x) = δ−dϕ

(
x− a
δ

)
, (ϕδ := ϕδ0, ϕa := ϕδa).

Observe that
∫
ϕδa =

∫
ϕ.

Imagine that u : Rd → R is Hölder of exponent α, and take ϕ from

D0 =

{
ϕ ∈ D : suppϕ ⊆ B(0, 1),

∫
ϕ 6= 0, ‖ϕ‖L∞ ≤ 1

}
.

We will use the bracket notation

〈u− u(a), ϕδa〉 =

∫
(u− u(a))ϕδa dx.

Taking absolute values and making a change of variables, we can write

|〈u− u(a), ϕδa〉| =
∣∣∣∣∫ (u− u(a))ϕδa dx

∣∣∣∣
=

∣∣∣∣∫ (u(a+ δz)− u(a))ϕ(z) dz

∣∣∣∣
≤ [u]αδ

α

∫
|z| · |ϕ(z)| dz.

Hence, for u ∈ Cα with α ∈ (0, 1],

JuKCα := sup
δ∈(0,1]

sup
a∈K

sup
ϕ

|〈u− u(a), ϕδa〉|
δα

≤ c[u]α,

so these norms are equivalent by the following proposition:

Proposition 13.1. If JuKCα <∞, then u ∈ Cα.

Proof. If JuKCα <∞,

sup
a∈K

δ−d
∫
|z−a|<δ

|u(z)− u(a)| dz ≤ c0δ
α.

Choose δ = |a− b| and argue that

|u(a)− u(b)| ≤ |u(a)− u(z)|+ |u(z)− u(b)|
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for z ∈ B(a, δ) ∩B(b, δ) with δ = |a− b|.

Integrate both sides over B(a, δ) ∩B(b, δ) to get

|B(a, δ) ∩B(b, δ)︸ ︷︷ ︸
Ba,b

| · |u(a)− u(b)| ≤
∫
Ba,b

|u(a)− u(z)| dz +

∫
Ba,b

|u(b)− u(z)| dz

≤
∫
B(a,δ)

|u(a)− u(z)| dz +

∫
B(b,δ)

|u(b)− u(z)| dz

≤ 2c0δ
α+d.

Hence, |u(a)− u(b)| ≤ c1δ
α, as desired.

We want to go beyond α ∈ (0, 1). For example, consider α ≥ 1. For such α, we first
define n = max{m ∈ N : m < α}. We say u ∈ Cα if u has n-many derivatives and if

P ua (x) :=
∑
|k|≤n

(∂ku)(a)(x− a)k, (x− a)k :=
d∏
i=1

(xi − ai)ki , k! := k1! · · · kd!,

then

JuKα,K = sup
δ∈(0,1)

sup
ϕ∈D0

sup
a∈K

∫
(u− P ua )ϕδa dx

δα
<∞.

One can show that JuKα,K < ∞ if and only if u possesses n many derivatives and for any
k with |k| = n, ∂ku is Hölder of exponent α− n.

Basically, we need to choose ϕ = ∂kψ for some smooth ψ, and observe that

‖∂kψ‖L∞ ≤ λ−k−d.
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14 Coherence and Hairer’s Reconstruction Theorem

14.1 Examples of coherence

Last time, we discussed Cαloc for α ∈ (0, 1) that can be characterized by (if u ∈ Cαloc and K
is compact)

sup
x∈K

sup
δ∈(0,1]

sup
ϕ∈D0

|〈u− u(x), ϕδx〉|
δα

=: [u]Cα,K <∞.

Also, if α ≥ 1, then we set

Px(y) = P ux (y) =
∑
|k|≤α

(∂ku)(x)
(y − x)k

k!
,

and u ∈ Cαloc means that for K compact,

sup
x∈K

sup
δ∈(0,1]

sup
ϕ∈D0

|〈u− Px, ϕδx〉|
δα

=: [u]Cα,K <∞.

For example, if α ∈ (1, 2), then

u(y)− Px(y) = u(y)− u(x)︸ ︷︷ ︸
[u(ty+(1−t)x)]10

−Du(x) · (y − x)

=

∫ 1

0
(Du(ty + (1− t)x)−Du(x)) · (y − x) dt.

To assert that if u ∈ C1 and Du ∈ Cα−1, then

|u(y)− Px(y)| ≤ c|x− y|α

locally uniformly. Then we can show that the above norm is finite. However, we may use
our polynomial approximation expression for our definition of Cαloc.

Here, we have an example of a function u that is well-approximated by a so-called germ
(Px : x ∈ Rd). Indeed, this family enjoys a regularity that we now explore. To find such a
regularity, observe

Pa(x) =
∑
|k|<α

∂ku(a)
(x− a)k

k!
,

Pb(x) =
∑
|k|<α

∂ku(b)
(x− b)k

k!

=
∑
|k|<α

 ∑
|r|<α−|k|

∂k+ru(a)
(b− a)r

r!
+Rk(a, b)

 (x− b)k

k!
,
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where the error
|Rk(a, b)| . |b− a|α−k.

From now on, f . g mean f ≤ cg for a constant c. Hence,

Pb(x) =
∑
|m|<α

∂mu(a)

m!

( ∑
k+r=m

(b− a)r

r!

(x− b)k

k!
m!

)
︸ ︷︷ ︸

(x−a)m

+
∑
|k|<α

Rk(a, b)
(x− b)k

k!

From this, we learn that

Pb(x)− Pa(x) =
∑
|k|<α

Rk(a, b)
(x− b)k

k!
,

and hence

|〈Pb − Pa, ϕδb〉| .
∑
|k|<α

|b− a|α−|k|δ|k|

. (δ + |b− a|)α.

Here, we have an example of a germ, namely (Px : x ∈ Rd) that is α-coherent (which will
be defined later).

Let us have another example, namely what we had before in Gubinelli’s version (the
sewing lemma) of Lyons and Victoire’s result: Imagine that we have A(s, t) with

|A(s, t) +A(u, t)−A(s, t)| . |t− s|α+β, s < u < t, α+ β > 1.

Then by the sewing lemma, we can find h such that

|h(t)− h(s)−A(s, t)| . |t− s|α+β.

For example, we may have A(s, t) = f(s)(g(t)−g(s)) with f ∈ Cα and g ∈ Cβ. As we stated
before, we may consider the germ (Fs : s ∈ R), where Fs = f(s)g′; what the condition A
means is this: Observe that A(s, t) = 〈Fs,1[s,t]〉. Hence

〈Fu − Fs,1[s,t]〉 . |t− s|α+β.

If ϕ = 1[0,1],

|〈Fu − Fs, ϕδs〉| . δ−1(|u− s|+ δ)α+β = δ−1(|u− s|+ δ)γ+1,

where γ = α + β − 1 > 0. In summary, we have an example of a germ that is γ-coherent,
or more specifically (−1, γ)-coherent.

Motivated by these two examples, we formulate some definitions.
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Definition 14.1. By a germ, we mean a measurable map F : Rd → D′ sending x 7→ Fx.

Definition 14.2. We call a germ (−τ, γ)-coherent with τ = τK only depending on a
compact set K and with respect to a test function φ ∈ D,

∫
ϕ 6= 0, if the following

condition is true:
〈Fx − Fy, ϕδy〉 . δ−τK (|x− y|+ δ)γ+τK

uniformly for x, y ∈ K. Here, we assume that τK ≥ 0 and γ + τK ≥ 0.
We say γ-coherent when we mean (−τ, γ)-coherent for some τ which does not matter.

14.2 Martin Hairer’s reconstruction theorem

Theorem 14.1 (Martin Hairer’s reconstruction theorem). Assume that F is a γ-coherent
germ with respect to some ϕ ∈ D. Then there exists u ∈ D′ such that

|〈u− Fx, ψδx〉| .

{
δγ γ 6= 0

1 + | log δ| γ = 0.

uniformly for x ∈ K and ψ such that suppψ ⊆ B1(0) and ‖ψ‖Cr ≤ 1 with r = rK .

Remark 14.1. If γ > 0 is positive, then the u in the theorem is unique.

Proof. If u and u′ satisfy the same inequality, and T = u − u′, then |T (ψδx)| . δγ . Let us
take f ∈ L1

loc and consider ζ ∈ D and consider f ∗ ζ. Here,

(f ∗ ζ)(x) =

∫
ζ(x− y)f(y) dy =

∫
(τyζ)(x) f(y) dy.

We claim that

T (f ∗ ζ) = T

(∫
Tyζf(y) dy

)
=

∫
T (τyζ)f(y) dy.

This can be done by Riemann approximation of the integral. Now

T (ζ) = lim
δ→0

T (ζ ∗ ψδ) = lim
δ→0

∫
T (τyψ

δ)ζ(y) dy = 0,

as |T (ψδ)| . δγ .
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15 Bounds for Germs

15.1 Condition for coherence of germs

Ultimately, we wish to find a distribution u ∈ D′ that is well-approximated by a germ.
Recall that a germ is F : Rd → D′ that is measurable.

Proposition 15.1. Let F be a germ, and assume that there exists a constant c, a compact
set K, exponents γ and r, and a distribution u such that

|(u− Fx)(φδx)| ≤ cδγ

for all x ∈ K, δ ∈ (0, 1], and φ ∈ D such that suppφ ⊆ B1(0) = {x : |x| ≤ 1} and
‖φ‖Cr ≤ 1. (Here, Fx := F (x).) Then

|(Fx − Fy)(φδy)| ≤ 2cδ−τ (|x− y|+ δ)γ+τ ,

provided that δ ∈ (0, 1/2], φ is as before, and |x−y| ≤ 1/2. Here, we may choose τ = d+r.

Remark 15.1. This basically says that F is (τ, γ)-coherent. Observe that

δ−τ (|x− y|+ δ)γ+τ .

{
δ−τ |x− y|γ+τ = δγ( |x−y|δ )γ+τ |x− y| > δ

δγ |x− y| < δ,

so this second case is an improvement. Also observe that if F is (τ, γ)-coherent and τ ≤ τ ′,
then it is also (τ ′, γ)-coherent.

Proof. Observe that we can write

|(Fx − Fy)(φδy)| ≤ |(Fx − u)(φδy)|+ |(u− Fy)(φδy)|
≤ |(Fx − u)(φδy)|+ c δγ︸︷︷︸

≤δτ (|x−y|+δ)γ+τ

.

It remains to bound |(u− Fx)(φδy)|. Note that x 6= y in general. Observe that

φδy(z) =
1

δd
φ

(
z − y
δ

)
=

1

δd
φ

(
(z − x)− (y − x)

δ

)
=

1

δd
φ

(
z − x− y−x

|y−x|+δ (|y − x|+ δ)

(|y − x|+ δ) δ
|y−x|+δ

)
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Denote ε := |y − x|+ δ, ε′ := δ
|y−x|+δ , and a := y−x

|y−x|+δ .

=
1

εd
1

(ε′)d
φ

( z−x
ε − a
ε′

)
=

1

εd
φε
′
a

(
z − x
ε

)
Denote ψ := φε

′
a .

= ψxε (z).

Now observe that by definition, our new test function

ψ(z) = (ε′)−dφ

(
z − a
ε′

)
, a =

y − x
|y − x|+ δ

,

so let’s examine the support of ψ: suppψ ⊆ Bε′+a(0), if suppφ ⊆ B1(0). Note that

ε′ + |a| = |y−x|
|y−x|+δ + δ

|y−x|+δ = 1.

We can also rephrase the condition of ‖φ‖Cr ≤ 1 as just giving a factor of ‖φ‖Cr in the
inequality in the hypothesis of the theorem.

We can now argue that

|(u− Fx)(φδy)| = |(u− Fx)(ψεx)|
≤ cεγ‖ψ‖Cr .

On the other hand, ‖ψ‖Cr ≤ (ε′)−(d+r). Hence,

|(u− Fx)(φδy)| ≤ c(|y − x|+ δ)γ
(

δ

|y − x|+ δ

)−d−r
= cδ−τ (|y − x|+ δ)γ+τ ,

where τ = d+ r, as desired.

15.2 Uniform bounds on germs

We now address the following question: Assume that

δ−γ sup
x∈K

sup
‖φ‖Cr≤1

(u− Fx)(φδx) ≤ c

for δ ∈ (0, 1].

Proposition 15.2. Suppose F = (Fx : x ∈ Rd) is a (−τ, γ)-coherent germ with respect to
φ.6 Then there exists η = ηK such that |Fx(φδx)| . δ−η uniformly in a compact set K and
uniformly for δ ∈ [0, 1].

6Later, we will see that coherence with respect to 1 φ implies coherence with respect to other functions.
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The important part is that we can choose η independent of x.

Proof. Fix a ∈ K, and observe that

|Fa(φδx)| ≤ c0‖φδx‖Cr ≤ c1δ
−d−r‖φ‖Cr

for φ such that suppφδx is in some compact set. This is the case if δ ∈ (0, 1] and x ∈ K.
We now use the coherence to assert that for x ∈ K,

|Fx(φδx)| ≤ |(Fa − Fx)(φδx)|+ |Fa(φδx)|
≤ cδ−τ (|a− x|︸ ︷︷ ︸

diamK

+δ)γ+τ + c2δ
−d−r.

We are done if we choose η = max{τ, d+ r}.

15.3 Preparation for proving the reconstruction theorem

We now focus on the proof of the reconstruction theorem of Hairer.7 As a preparation, we
start with a test function φ with

∫
φ 6= 0 and switch to a new test function φ̂ so that∫

φ̂ =

∫
φ, but

∫
φ̂(x)xr dx = 0 for 0 < |r| ≤ `− 1.

In fact, what we have in mind is

φ̂ =

`−1∑
i=0

ciφ
λi , φλ(x) := λ−dφ

(x
λ

)
.

In other words, given distinct positive λ0, . . . , λ`−1, we can find c0, . . .`+1 such that for φ̂
defined this way, the integral conditions hold. Indeed,∫

φ̂ =
`−1∑
i=0

ci

∫
φ

∫
φ̂xr dx =

∑
i=1

ci

∫
xrφλi(x) dx

=
`−1∑
i=0

ciλ
|r|
i

∫
xrφ(x) dx.

7Hairer’s original proof used wavelets, which we will not use.
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So we need

{∑`−1
i=0 ci = 1,∑`−1
i=0 ciλ

r
i for r = 1, . . . , `− 1,

or


1 · · · 1
λ0 · · · λ`−1

...
...

λ`−1
0 · · · λ`−1

`−1


︸ ︷︷ ︸

A


c0

c1

...
c`−1

 =


1
0
...
0

 .

In fact, there is an explicit formula for A−1, and the answer is

ci =
∏
j 6=i

λj
λj − λi

.

Note that we may choose the λis small enough so that supp φ̂ ⊆ B(0, 1/2).
Out of this φ̂, we now build another test function of the form

φ̃ = φ̂2 − φ̂1/2.

We will use this to prove the reconstruction theorem next time.
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16 Proof of Hairer’s Reconstruction Theorem

16.1 Motivation for multiresolution analysis

We wish to show the following reconstruction theorem of Martin Hairer:

Theorem 16.1. If F is a γ-coherent germ, then there exists a distribution T such that

|〈T − Fx, ϕδx〉| . δγ , γ 6= 0.

This is uniform for δ ∈ (0, 1], x ∈ K, suppϕ ⊆ B1(0), ‖ϕ‖Cr ≤ 1.

Last time, we showed that T is unique if γ > 0. However, if γ < 0, then we can add a
distribution S to T , provided that

|〈S, ϕδx〉| . δγ ,

which means S ∈ Cγ .
To give an idea about the strategy of the proof, we first discuss Hairer’s original proof

that uses wavelet expansion. In fact, the proof we presented for d = 1 uses the wavelet
1[0,1], i.e. the Haar basis. Recall that if f ∈ Cα, g ∈ Cβ, then∫ t

s
fg′ dθ = (fg′)︸ ︷︷ ︸

T

(1[s,t])

≈
∑

tni ∈[s,t]

f(tni )(g(tni+1)− g(tni ))

=
∑

tni ∈[s,t]

f(tni )g′(1[tni ,t
n
i+1])

=
∑

tni ∈[s,t]

Ftni (1[tni ,t
n
i+1]).

And we have shown that this converges if α + β > 1. For our extension, we replace 1[s,t]

with ϕ ∈ D, and the Haar basis may be replaced with a basis using a multiresolution
analysis (MRA) of Mallat.

16.2 Multiresolution analysis

Here is a quick review of MRA:

Definition 16.1. We say φ ∈ L2(R) is a scaling function or a (father) wavelet8 if the
following conditions are true: First, let φna(x) = 2n/2φ(2n(x− a)), where n ∈ Z, a ∈ 2−nZ
so that ‖φna‖L2 = ‖φ‖L2 . Also set Vn = span{φna : a ∈ Λn = 2−nZ}.

8There are also mother wavelets.
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(i) Vn ⊆ Vn+1 (it suffices to have V0 ⊆ V1)

(ii) {φ(· − k) : k ∈ Z} is an orthonormal basis for V0 (hence {φna : a ∈ Λn} is an
orthonormal basis for Vn)

(iii) L2(R) =
⋃
n Vn.

Example 16.1. We can take, for example, φ = 1[0,1] to get functions of the form φna =
1[tni ,t

n
i+1]. Also, V0 = {φ(· − k) : k ∈ Z}.

Remark 16.1. It can be proved that there is no such φ which is smooth and has compact
support. However, if we only require that φ has a certain number of derivatives, it is
possible to construct one.

Remark 16.2. We may find Wn such that Vn+1 = Vn ⊕Wn (Wn is the orthogonal com-
plement of Vn inside Vn+1).

Proposition 16.1. There exists ψ such that if ψna (x) = 2n/2ψ(2n(x− a)), then

Wn = span{ψna : a ∈ Λn}.

This ψ is called the (mother) wavelet.

Remark 16.3. In fact, it suffices to find ψ ∈ V1 so that ψ is orthogonal to the integer
translates of φ, and W0 = span{ψ(· − k) : k ∈ Z}. Indeed,

V0 ⊆ V1 ⇐⇒ φ(x) =
√

2
∑
r∈Z

arφ(2x− r) for coefficients ar,

And ψ is simply given by

ψ(x) =
√

2
∑
r∈Z

brφ(2x− r), br = (−1)ra1−r.

Example 16.2. When φ = 1[0,1], we may take to be 1 on [0, 1/2] and -1 on [−1/2, 0).

Here is the proof of ψ ⊥ V0:

Proof. Observe that

φ`(x) = φ(x− `)

=
∑
r

ar(
√

2φ(2x− 2`− r))

=
√

2
∑
r

ar−2`φ(2x− r).
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Hence,

〈ψ, φ`〉 =
∑
r

ar−2`br

=
∑
r

ar−2`(−1)ra1−r

Denote 1− s = r − 2`

= −
∑
s

a1−s(−1)sas−2`,

which implies that 〈ψ, φ`〉 = 0.

Theorem 16.2 (Ingrid Daubechies). For every k, there exists a scaling function φ ∈ Ck
of compact support. Moreover, any polynomial of degree k is in V0.

16.3 Strategy of Hairer’s proof of the reconstruction theorem

Assuming this theorem of Daubechies, we are now ready to describe Hairer’s strategy for
the proof. Again, we wish to find a distribution T such that 〈T − Fx, ϕδx〉 . δγ . Here, is
the recipe for constructing T : When γ > 0, T = limn→∞ Tn (this means for every ψ ∈ D,
T (ψ) = limn→∞ Tn(ψ) = limn→∞

∫
Tn(x)ψ(x) dx), where

Tn(x) =
∑
a∈Λn

〈Fa, φna〉φna(x).

How about γ < 0? In this case, the convergence fails. Recall that if n > 0,

Vn = Vn−1 ⊕Wn−1 = Vn−2 ⊕Wn−1 ⊕Wn−2 = · · · = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wn−1.

Hence, L2 = V0 ⊕
⊕∞

n=0Wn, or more generally,

L2 = Vm ⊕
∞⊕
n=m

Wm.

So for any u,

u =
∑
a∈Λm

〈u, φma 〉φma +
∞∑
n=m

∑
a∈Λm

〈u, ψna 〉ψna .

Our candidate for T is

T =
∑
a∈Λm

〈Fa, φma 〉φma +

∞∑
n=m

∑
a∈Λm

〈Fa, ψna 〉ψna .
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16.4 Proof of the reconstruction theorem without wavelet expansions

We now present a proof that does not use wavelet expansions. We achieve this by using a
suitable ρ ∈ D. If we choose ρ correctly, then

Tn = Fx(ρ̂nx), where ρ̂nx(y) = 2dnρ(2n(x− y)) = ρ2−n
x (y).

For γ > 0, the limit limn Tn will exist, but for γ < 0, we will throw away a “bad term”
which will not matter. We will finish the explanation next time.
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17 Proof of Hairer’s Reconstruction Theorem Without Us-
ing Wavelets

17.1 Scaling and translation of convolutions

Given a γ-coherent germ (Fx : x ∈ Rd), we wish to find a distribution T such that

〈T − Fx, ϕδx〉 . δγ ,

locally uniformly in x. Recall that coherence means

〈Fx − Fy, ϕδy〉 . δ−τ (|x− y|+ δ)γ+τ ,

locally uniformly in x, y. If it is also uniform in ϕ with ‖ϕ‖Cr ≤ 1 and suppϕ ⊆ B1(0),
then we can find β ≥ 0 such that

〈Fx, ϕδx〉 . δ−β,

locally uniformly.
We now give a proof of the existence of T using a single test function ϕ with

∫
ϕ 6= 0.

Here is the strategy for constructing our T . We choose a suitable ρ ∈ D with
∫
ρ = 1 and

define ρ̂nx = ρ2−n
x = 2dnρ(2n(x − y)) (recall that ψδx(y) := δ−dψ(y−xδ )). We will construct

ρ that can be represented as ρ = ψ ∗ ϕ for suitable test function ψ and ϕ that will be
determined later. But for now, let us make some observations.

Proposition 17.1.
(ψ ∗ ϕ)δ = ψδ ∗ ϕδ.

Proof.

−δ−d(ψ ∗ ϕ)(xδ ) = δ−d
∫
ψ(xδ − z)ϕ(z) dz

= δ−2d

∫
ψ(xδ −

z
δ )ϕ( zδ ) dz

=

∫
ψδ(x− z)ϕd(z) dz.

Proposition 17.2.

(ψ ∗ ϕ)x(·) =

∫
ψz(·)ϕx(z) dz

Proof.

(ψ ∗ ϕ)x(y) = ψ ∗ ϕx(y)

=

∫
ψ(y − z)ϕx(z) dz

=

∫
ψz(y)ϕx(z) dz.
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17.2 Construction of T as a limit

In fact, for a carefully selected ρ, we set

Tn(x) = Fx(ρ̂nx), T = lim
n→∞

Tn,

where this limit means T (ζ) = limn→∞
∫
Tn(x)ζ(x) dx. For γ > 0, we show that the

limit does exist and satisfies our requirement. For γ < 0, we need to first get rid of some
diverging terms. Again, our ρ takes the form ρ = ψ ∗ ϕ (with ψ and ϕ to be picked later).
To prove our convergence, write

T = T∞ = T1 +
∞∑
n=1

(Tn+1 − Tn)

and show that |〈Tn+1 − Tn, ζ〉| . 2−nα for some α > 0. Indeed,

Tn+1(x)− Tn(x) = Fx(ρ̂n+1
x − ρ̂nx)

= Fx(m̂n
x),

where m = ρ1/2(y)− ρ(y) = 2dρ(2y)− ρ(y). Observe that since ρ = ψ ∗ ϕ, then

m = ρ1/2 − ρ = ψ1/2 ∗ ϕ1/2 − ψ ∗ ϕ.

If we chose ψ = ϕ2, then

m = ϕ ∗ ϕ1/2 − ϕ2 ∗ ϕ = ϕ ∗ (ϕ1/2 − ϕ2) =: ϕ ∗ ξ.

Our goal is bounding Fx(m̂n
x). By our propositions,

Fx(m̂n
x) = Fx

(∫
ϕ̂nz ξ̂

n
x dz

)
=

∫
Fx(ϕ̂nz )ξ̂nz (z) dz

= An +Bn,

where

An =

∫
Fz(ψ̂

n
z )ξ̂nx (z) dz, Bn =

∫
(Fx − Fz)(ψ̂nz )ξ̂nx (z) dz.

Given ξ ∈ D,

〈An, ζ〉 =

∫∫
Fz(ψ̂

n
z )ξ̂nx (z)ζ(x) dz dx

=

∫
Fz(ϕ̂

n
z )(ξ̂n + ξ)(z) dz.
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Recall that ξ = ϕ1/2 − ϕ2. Imagine that ϕ satisfies
∫
ϕ = 1,

∫
ϕxr dx = 0 for 0 < |r| ≤ `.

Hence,
∫
ξxr dx = 0 for 0 ≤ |r| ≤ `. For such ϕ, we can assert

ξ̂nx + ζ(z) =

∫
ξ̂n(x− z)ζ(z) dz =

∫
ξ̂n(x− z) (ζ(z)− P `x(z))︸ ︷︷ ︸

=O(|x−z|`+1)

dz = O(2−n(`+1)),

where P `x(z) is the Taylor expansion up to degree ` at x. Thus,

|〈An, ζ〉| . 2n(β−`−1),

which is exponentially small if ` is sufficiently large. In summary, we have A = A∞ =
A1 +

∑∞
n=1(An+1 −An) converges as a distribution.

We now turn to the Bns; this is the one that only converges is γ > 0. Observe that

|〈Bn, ζ〉| =
∣∣∣∣∫∫ (Fx − Fz)(ϕ̂nz )ξ̂nx (z) dzζ(x) dz

∣∣∣∣
Since |x− z| and δ are both of order 2−n,

. 2−nγ ,

which is exponentially small if γ > 0.
In summary, the limit exists, and we have our candidate for T . It remains to verify

that
|〈T − Fx, ζδx〉| . δγ ,

locally uniformly. To prove this, observe that since ρ = ϕ ∗ ψ, we can write

T (x) = lim
n→∞

Tn(x)

= lim
n→∞

Fx(ϕ̂ ∗ ψ
n
)x

= lim
n→∞

Fxϕ̂
n
y ψ̂

n
x(y) dy

= lim
n→∞

Fx(ϕ̂ny )ψnx(y) dy.

Also,

Fx(ξδx) = lim
n→∞

Fx((ξδ ∗ ϕ̂n)(x))

= lim
n→∞

Fx

(∫
ϕ̂ny ξ

δ
x(y) dy

)
= lim

n→∞

∫
Fx(ϕ̂ny )ξδx(y) dy.

We will complete the proof next time.
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18 Proving the Bounds in Hairer’s Reconstruction Theorem

18.1 Recap: Constructing a candidate in Hairer’s reconstruction theo-
rem

Theorem 18.1 (Hairer’s reconstruction theorem). Let F be γ-coherent. Then there exists
a distribution T = R(F ) such that

|(T − Fx)(ψδx)| .

{
δγ γ 6= 0,

log 1
δ γ = 0.

Here, the bound is uniform over x ∈ K, δ ∈ (0, 1], ψ ∈ D with ‖ψ‖Cr ≤ 1.

We want to think of T as the value of some continuous operator R. So far, we have
a candidate for T when γ > 0. Here is an overview of what we have seen so far. We
start from ϕ ∈ D such that

∫
ϕ = 1 and

∫
ϕxk dx = 0 for 0 < |k| < r. From this ϕ, we

constructed a suitable test function ρ of the form ρ = η∗ϕ with η = ϕ2 and ρ1/2−ρ = ζ ∗ϕ,
where ζ = ϕ1/2 − ϕ2. Recall that

ϕδ(x) = δ−dϕ(x/δ), ϕδa(x) = δ−dϕ((x− a)/δ), ϕa(x) = ϕ(x− a).

Observe that since
∫
ζ = 0, we have

∫
ζP dx = 0 for any polynomial P of degree at most

r − 1.
Here is the idea behind the construction of T : Indeed if we define convolution by

(T ∗ φ)(X) = T (φ̃x), φ̃(z) = φ(−z),

and if
∫
φ = 1, it can be shown that limδ→0 T ∗ φδ = T . Recall that ρ̂nx(y) = 2dnρ(2n(y −

x)) = ρ2−n
x (y), and since

lim
n→∞

T (ρ̂nx) = T,

from this we guess tat a good approximation for T satisfying the theorem is simply

Tn(x) = Fx(ρ̂nx).

Last time, we showed that indeed Tn(x) converges when γ > 0, where convergence means
that for any ψ ∈ D, limn〈Tn(x), ψ〉 exists. The very form of ρ allows us to have the following
representation:

Tn = T1 +
n−1∑
k=1

(Tk+1 − Tk),

where

Tk+1(x)− Tk(x) = Fx(m̂k
x) =

∫
Fx(ϕ̂ky)ζ̂

k
x(y) dy, m = ρ1/2 − ρ.
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We can write this as

Tk+1(x)− Tk(x) =

∫
(Fx − Fy)(ϕ̂ky)ξ̂kx(y) dy︸ ︷︷ ︸

Bk

+

∫
Fy(ϕ̂

k
y)ζ̂

k
x(y) dy︸ ︷︷ ︸

Ak

.

Last time, we showed that
∑

k Ak converges no matter γ is. However, the bound for
the second term is |Bk| . 2−γk, so for Bk, we get a pointwise bound that would imply
the pointwise convergence only when γ > 0. In fact, when γ ≤ 0, our candidate for T is
limn→∞ T1 +

∑n−1
k=1 Ak = T1 +

∑∞
k=1Ak.

18.2 Proof of the bounds in the reconstruction theorem

We now try to prove that (T −Fa)(ψδa) . δγ . Here, a is fixed. We first focus on the case of
γ ≤ 0. Again, our T is the limit of Sn = T1 +

∑n−1
k=1 Ak. To compare this with Fa, observe

that
Fa = lim

n→∞
Fa(ρ̂

n
· ).

That is,

Fa(ψ) = lim
n→∞

∫
Fa(ρ̂

n
x)ψ(x) dx.

In the same manner, we may write

Fa = G1 +
∞∑
k=1

(Gk+1 −Gk), Gk(x) := Fa(ρ̂
k
x).

Also, we may find

Γn(x) = G1(x) +
n−1∑
k=1

(Gk+1(x)−Gk(x)),

so that limn→∞ Γn = Fa. We wish to compare Γn to Sn = T1 +
∑n−1

k=1 Ak. Observe that

Ck(x) = Gk+1(x)−Gk(x)

= Fa(ρ̂
k+1
x − ρ̂kx)

= Fa(m̂
k
x)

=

∫
Fa(ϕ̂

k
y)ζ̂

k
x(y) dy.

We wish to estimate

|〈Ak(x)− Ck(x), ψδa〉| =
∣∣∣∣∫∫ (Fy − Fa)(ϕ̂ky)ζkx(y) dy ψδa(x) dx

∣∣∣∣
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=

∣∣∣∣∫ (Fy − Fa)(ϕ̂ky)(ζ̂k ∗ ψδa)(y) dy

∣∣∣∣
.
∫

2kτ (|y − a|+ 2−k)γ+τ |(ζk ∗ ψδa)(y)| dy

As a warmup, observe that we have the bound

≤ 2kτ (δ + 2−k+1)γ+τ‖ψk ∗ ψδa‖L1 ≤ 2kτ (δ + 2−k+1)γ+τ‖ζ‖L1‖ψ‖L1 .

Hence, if γ < 0, ∑
k:2−k≥δ

|〈Ak − Ck, ψδa〉| .
∑

k:2−k≥δ

2−kγ

=
∑

k≤| log δ|

2−kγ

=

{
| log δ| γ = 0

(2−γ)| log δ| = δγ γ < 0.

Next, we concentrate on
∑

k:2−k<δ |〈Ak − Ck, ψδa〉|. To control this, we need a better

estimate on (ζ̂k∗ψδa)(y), which has a support contained in Ba(2
−k+δ). Recall that

∫
ζP = 0

for any polynomial P of degree < r. Now∫
ζ̂k(y)ψδa(x) dx =

∫
ζ̂kx(y)(ψδa(x)− Py(x)) dx,

where Py(x) is the Taylor polynomial of ψδa at y of degree r − 1. Hence,∣∣∣∣∫ ζ̂k(y)ψδa(x) dx

∣∣∣∣ . ∫ |y − x|r‖ψδa‖Cr‖ξ̂kx(y)| dx

. 2−kr‖ψδa‖Cr

. 2−krδ−d−r‖ψ‖Cr .

Hence,

|〈Ak − Ck, ψδa〉| . 2kτ (δ + 2−k+1)γ+τ2−krδ−d−r (2−k + δ)d︸ ︷︷ ︸
volume of Ba(2−k + δ)

.

Thus, ∑
k:2−k≤δ

|〈Ak − Ck, ψδa〉| .
∑

k:2−k≤δ

2−k(r−τ)δγ+τ−r
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Provided r > τ , we get

. δr−τδγ+τ−r

= δγ .

This completes the proof when γ ≤ 0.
How about when γ > 0? We already know that the tail∑

k:2−k≤δ

|〈Ak − Ck, ψδa〉| . δγ .

We now argue that ∑
k:2−k≤δ

|〈Bk, ψδa〉| . δγ

when γ > 0. Observe that

|〈Bk, ψδa〉| =
∣∣∣∣∫∫ (Fx − Fy)(ϕ̂ky)ζ̂kx(y) dy ψδa(x) dx

∣∣∣∣
.

∣∣∣∣∫ 2kτ (|x− y|+ 2−k)γ+τ ζ̂kx(y) dy ψδa(x) dx

∣∣∣∣
. 2−kγ‖ζ‖L1‖ψ‖L1 .

Hence, ∑
k:2−k≤δ

|〈Bk, ψδa〉| .
∑

k:2−k≤δ

2−kγ . δγ .
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19 Finishing Hairer’s Reconstruction Theorem and Intro-
duction to Regularity Structures

19.1 Finishing the proof of Hairer’s reconstruction theorem

We have been proving the following theorem.

Theorem 19.1 (Hairer’s reconstruction theorem). If G is γ-coherent, then there is a
distribution T such that

|(T − Fx)(ψδx)| .

{
δγ γ 6= 0

| log δ| γ = 0.

Proof. Last time, we proved this when γ ≤ 0. The proof we offered last time would yield
the following estimate for γ > 0: Recall that

T = lim
n→∞

Tn, Tn(y) = Fy(ρ̂
n
y ), T = T1 +

∞∑
k=1

(Tk+1 − Tk),

Fx = lim
n→∞

Gn, Gn(y) = Fx(ρ̂ny ), Fx = G1 +

∞∑
k=1

(Gk+1 −Gk).

Last time, we proved that∑
k:2−k≤δ

|〈(Tk+1 − Tk)− (Gk+1 −Gk), ψxδ〉| . δ−γ , γ > 0.

It remains to show
|〈Tn −Gn, ψδx〉| . δγ ,

provided that δ ≈ 2−n, or more specifically, 2−n ≤ δ < 2−n+1. Observe that

Tn(y)−Gn(y) = (Fy − Fx)(ρ̂ny ), ρ = ϕ ∗ η, η = ϕ2.

Hence,

(Tn −Gn)(y) =

∫
(Fy − Fx)(ϕ̂nz )η̂ny (z) dz

Now

|〈(Tn −Gn), ψδx〉| =
∫∫

(Fy − Fx)︸ ︷︷ ︸
Fy−Fz+Fz−Fx

(ϕ̂nz )η̂ny (z)ψδx(y) dy dz

Using the coherence,

.
∫∫

[2nτ (|y − z|+ 2−n)γ+τ︸ ︷︷ ︸
2−γn

+ 2nτ (|x− z|+ 2n)γ+τ︸ ︷︷ ︸
2−γ

]|η̂ny (z)ψδx(y)| dy dz

. 2−γn‖η‖L1‖ψ‖L1 .

We are done.
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19.2 Remarks about the reconstruction theorem

Remark 19.1. The way we constructed T = limn→∞ Fx(ρ̂nn) = R(F ) is linear in F .
Moreover, if we define

‖|F‖|K,ϕ = sup
x,y∈K

sup
δ∈(0,1]

(Fx − Fy)(ϕδy)
δ−τ (|x− y|+ δ)γ+τ

,

where τ and γ depend on the compact set K, then

|(T − Fx)(ψδx)| . ‖|F‖|δγ

uniformly over ψ ∈ Dr, x ∈ K, δ ∈ (0, 1], where

Dr = {ψ ∈ D : ‖ψ‖Cr ≤ 1, suppψ ⊆ B1(0)}.

Remark 19.2. As an example, take f ∈ Cα(Rd), g ∈ Cβ(Rd), α, β ∈ (0, 1), and set
Fx = f(x)∇g. Observe that if g ∈ Cβ, then ∇g ∈ Cβ−1(Rd). By Cτ (Rd) with τ < 0, we
mean this: First, pick r = r(τ) to be the smallest positive integer r such that −τ < r ( or
τ > −r). Define

[T ]K,τ := sup
δ∈(0,1)

sup
ϕ∈Dr

|T (ϕδx)|
δT

,

Cτloc := {T : [T ]K,τ <∞ for every K}.

Then g ∈ Cβ =⇒ ∇g ∈ Cβ−1.
Now

(Fx − Fy)(ϕδx) = (f(x)− f(y))∇g(ϕδx)

= −(f(x)− f(y))g(∇ϕδx)

= δ−1(f(x)− f(y))g((∇ϕ)δx).

Since we are dealing with ∇g, we can replace g by g−g(x) (subtracting a constant). Hence,
if |x− y| ≤ 1, then

|(Fx − Fy)(ϕδx)| . δ−1[f ]|x− y|α[g]βδ
β

≤ [f ]α[g]βδ
−1(|x− y|+ δ)α+β

= [f ]α[g]βδ
−1(|x− y|+ δ)γ+1,

where γ = α+ β − 1. Thus, F is (−1, γ)-coherent.
Use the theorem to assert that there exists some operator Γ(f, g) = R(F ) such that

|(Γ(f, g)− f(x)∇g)(ψδx)| . [f ]α[g]βδ
γ .
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Note that since R is linear in F , Γ is bilinear and continuous in (f, g). In fact, Γ(f, g) is
unique if γ > 0. On the other hand, if f, g ∈ C1, then T (y) = f(y)∇g(y) also satisfies the
above inequality. By uniqueness, Γ(f, g) = f∇g for f, g smooth. The same comment does
not apply to the case of γ ≤ 0.

Remark 19.3. Our result can be extended to Besov spaces Bγ
p,q. Roughly, in Bγ

p,q we
replace the uniform norm in x with Lp norm and uniform in δ ∈ (0, 1) with Lq(1

δ dδ).

19.3 Introduction to regularity structures

For our purposes, we often have various terms in our PDE that involve a local description
of various different exponents. To do this in a systematic way, we introduce the theory of
regularity structures. Here is the set-up.

(i) There is a discrete set A ⊆ R that is bounded below. Roughly, each α in A represents
terms that are in Cα in our PDE. We always assume 0 ∈ A.

(ii) For each α, we have a Banach space Tα with norm ‖ · ‖α. For T0 = R = span(1). Fpr
T0 = R = span(2) = 〈1〉,.

(iii) We also consider a group G of linear, continuous transformations Γ : T → T where
T =

⊕
α∈A Tα. Moreover, we assume τ ∈ Tα, Γτ − τ ∈

⊕
β<α Tβ.

(i)-(iii) yields a structure (A, T,G).
We need a model to turn this abstract stuff into real stuff: (πx,Γx,y : x, y ∈ Rd). Here,

πx is a bounded, linear map from T → D′ with each Γx,y ∈ G satisfying

πxΓx,yτ = πyτ.

In short,
πxΓx,y = πy.

Example 19.1 (e2+γ , γ ∈ (0, 1)). Let d = 1, A = {0, 1, 2}, T0 = 〈1〉, T1 = 〈X〉, T2 = 〈X2〉.
Then T = {τ = c01+ c1X + c2X

2 : c0, c1, c2 ∈ R}, and

G = {Γh : h ∈ R}, whereΓhτ = (c01+ (X + h1)2 + c2(X + h1)2).

Then

Γhτ − τ = c1h1+ 2c2hX + c2h
2
1

= (c1h+ c2h
2)1+ 2c2hX.
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20 Regularity Structures

20.1 Regularity structures and their relation to coherence

We have proved the reconstruction theorem, which says that if you have some local reg-
ularity, i.e. coherence, then you can construct a distribution which serves as a local ap-
proximation. Last time, we discussed the regularity structure, a bookkeeping device for
discussing obstructions we deal with in a PDE: Namely, we have a discrete A ⊆ R with
0 ∈ A and minA > −∞ (the members of this set represent the homogeneity and hence
regularity of various terms you have to deal with). We have a Banach space T =

⊕
r∈A Tr

with Banach spaces Tr with ‖ · ‖r; we are mostly interested in when A is a finite set and
Tr are Euclidean spaces. We always assume T0 = R; the dimension of these spaces will be
the number of beasts of that type you have to deal with.

If we have a Taylor expansion at a point x we can re-expand to turn it into a Taylor
expansion at a point y. We express this idea in this setting by a group G of linear,
continuous transformations Γ : T → T . Moreover, for τ ∈ Tr, Γτ − τ ∈

⊕
s<r Ts. We also

write
T<r =

⊕
s<r

Ts, T≤r =
⊕
s≤r

Ts.

Definition 20.1. Let L(T ) = L(T ;D′) be the set of linear, continuous maps L : T → D′.
We say M = (Π,Γ) is a model for (A, T,G) if Π : Rd → L(T ) and Γ : Rd × Rd → G with
the following properties (denoting Πx = Π(x),Γx,y = Γ(x, y)):

1. Πxτ = πyΓx,yτ

2. Γx,yΓy,z = Γx,z.

3. If τ ∈ Tα, then

sup
δ∈(0,1]

sup
ϕ∈Dr

sup
x∈K

|(Πxτ)(ϕδx)|
‖τ‖αδα

<∞,

where K is a compact set, and Dr = {ϕ ∈ D : suppϕ ⊆ B1(0), ‖ϕ‖Cr ≤ 1}, where r
is the smallest integer that is more than −minA.

4. ‖Γx,yτ‖β . |x− y|α−β‖τ‖α.

Π turns an abstract symbol into a distribution in a way that respects all this linear
structure.

Definition 20.2. Next, we define CγM to be the set of functions f : Rd → T<γ such that

‖f(x)− Γx,yf(y)‖α . |x− y|γ−α

for α < γ.
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Hence, we may define the norm

[f ]α = sup
α<γ

sup
x 6=y∈K

‖f(x)− Γx,yf(y)‖α
|x− y|γ−α

.

Theorem 20.1. For every γ, there exists an operator Rγ : CγM → D′ which is linear and
continuous and which satisfies

|(Rγf −Πxf(x))(ϕδx)| .

{
δγ γ 6= 0

| log δ| γ = 0,

uniformly for ψ ∈ Dr, δ ∈ (0, 1], x ∈ K.

Proof. To simplify the notation, we write fx = f(x) and Πx = Π(x). Now define Fx =
Πx(fx). We can achieve the desired result if we can show that the germ (Fx : x ∈ Rd) is
γ-coherent. Indeed,

|(Fx − Fy)(ϕδy)| = |(Πxfx −Πyfy)(ϕ
δ
y)|

= |(Πxfx −ΠxΓx,yfy)(ϕ
δ
y)|

= |Πx(fx − Γx,yfy)(ϕ
δ
y)|

Recall that f : Rd →
⊕

α<γ Tα, so ‖fx − Γx,yfy‖ . |x − y|γ−α. Here, Pατ means the
α-component of τ , i.e. τ =

∑
α∈A(Pατ).

=

∣∣∣∣∣∏
x

Pα(fx − Γx,yfy)(ϕ
δ
y)

∣∣∣∣∣
≤
∑
α<γ

∣∣∣∣∣∏
x

∑
α<γ

Pα(fx − Γx,yfy)(ϕ
δ
y)

∣∣∣∣∣
.
∑
α<γ

δα‖fx − Γx,yfy‖α

.
∑
α<γ

δα|x− y|γ−α

= δ−r
∑
α<γ

δα+r|x− y|γ−α

= δ−r
∑
α<γ

(δ + |x− y|)γ+r

. δ−r(δ + |x− y|)γ+r,

which is exactly the definition of coherence.9

9Professor Rezakhanlou described this as a “one-line proof.”
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20.2 An example: Taylor series

Example 20.1. Assume A = {0, 1, 2, . . . }, and let T = R[X1, . . . , Xd] be the space of
polynomials of variables X1, . . . , Xd with real coefficients. Again, we use Xk = Xk1

1 · · ·X
kd
d ,

where k = (k1, . . . , kd) ∈ Nd and |k| = k1 + · · · + kd. Now Tr is the set of homogeneous
polynomials of degree r, span({Xk : |k| = r}) = 〈Xk : |k| = r〉, and T≤r is the set of
polynomials of degree ≤ r. (By S = 〈τ1, . . . , τ ell〉, we mean S = span(τ1, . . . τ `) and
τ1, . . . , τ ` are linearly independent.)

Next, G = {Γh : h ∈ Rd}. Formally,

Γh(P (X)) = P (X + h1).

For example, (X + h1)k =
∏d
i=1(Xi + h1)ri , using the convention that Xi1 = 1Xi = Xi.

If degP = r, then deg(ΓhP − P ) < r.
We now define a model for this:

Πa(P (X))(x) = P (x− a).

Observe that

〈Πa(X
k), ϕδa〉 =

∫
Πa(X

k)(x)ϕδa(x)

=

∫
(x− a)kϕδa dx

Use a change of variables.

=

(∫
P (x)ϕ(x) dx

)
δ|k|

Next, we discuss CγM with γ = n+ γ0, where n ∈ N and γ0 ∈ (0, 1). Let f ∈ CγM . Then
f(x) =

∑
k ck(x)Xk ∈

⊕
r<γ Tr is a polynomial of degree n. We claim that we must have

that ck = 1
k!∂

kc0 with c0 ∈ Cγ and ck must be Hölder of exponent γ0 when |k| = n.
This is the same flavor as in the Whitney extension theorem. First, we have the Tietze

extension theorem. If we have a closed subset of a decent topological space, we can extend
a continuous function on the closed subset to the whole set without increasing the norm of
it. The Whitney extension theorem achieves this with derivatives by assigning polynomials
to each point and showing that they must be related via Taylor expansion.
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21 Two Examples of Regularity Structures

We discuss two models for our theory before treating our ill-posed PDEs.

21.1 Finite Taylor Polynomials

Example 21.1. Let A = N, T = R[X1, . . . , Xd], with Tr = 〈Xk : |k| = r〉, and ‖ · ‖r the
standard Euclidean norm. Recall that Γx,y = Γx−y, with Γh(P (X)) = P (X +h1). For our
model, (Πa(P (X)))(x) = P (x − a). This gives the model M = (Π,Γ). We now specify
CγM = {f : Rd →

⊕
r<γ Tr | ‖f(x)− Γx,yf(y)‖r . |x− y|γ−r}.

We claim that for any γ > 0, CγM is isomorphic to Cγ(Rd). Let us assume that γ = n+γ0

with n ∈ N and γ0 ∈ (0, 1). Then f ∈ CγM means that f(x) is a polynomial of degree at
most n i.e. f(x) =

∑
k:|k|≤n ak(x)Xk, with (setting h = x− y so that x = y + h)∥∥∥∥∥∥

∑
k:|k|≤n

ak(y + h)Xk −
∑

k:|k|≤n

ak(y)(X + h1)k

∥∥∥∥∥∥
r

. |h|γ−r.

For example, if r = n, ∑
k:|k|≤n

|ak(y + h)− ak(y)| . |h|γ0 ,

which means that when |k| = n, ak(y) is γ0-Hölder. More generally,

∑
|`|=r

∣∣∣∣∣∣∣∣a`(y + h)−
∑
k:k≥`
|k|≤n

(
k

`

)
ak(y)hk−`

∣∣∣∣∣∣∣∣ . |h|
γ−r.

To ease the notation, assume d = 1 and r = n− 1. Then we get

|an−1(y + h)− an−1(y)− nan(y)h| . |h|γ0+1

Divide by h and send h → 0 to arrive at: an−1 is differentiable, and d
dyan−1 = nan.

Inductively, we can show that

ak(y) =
1

k!
∂ka0(y).

In summary,

f(x) =
∑
|k|≤n

ak(x)Xk ∈ Cγ0+h
M ⇐⇒ a0 ∈ Cγ(Rd), f(x) = Taylor expansion of deg n of a0.
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Remark 21.1 (Whitney expansion). Imagine that a closed set K ⊆ Rd is given and we
assign a polynomial f(x) as above to each x ∈ K. If for x ∈ K the bound∥∥∥∥∥∥

∑
k:|k|≤n

ak(y + h)Xk −
∑

k:|k|≤n

ak(y)(X + h1)k

∥∥∥∥∥∥
r

. |h|γ−r.

holds, then f(x) can serve as a candidate for the Taylor expansion of a suitable function
a0 : Rd → R such that for x ∈ K, f(x) is indeed its Taylor expansion.

21.2 The Gubinelli derivative

Example 21.2. Pick α ∈ (1/3, 1/2), and choose A = {α−1, 2α−1, 0, α}. Note that r = 1,
i.e. the integer −1 is the best lower bound for A. We define

T0 = 〈1〉, Tα = 〈X1, X2, . . . , X`〉,

Tα−1 = 〈Ẋ1, Ẋ2, . . . , Ẋ`〉, T2α−1 = 〈Ẋi,j : 1 ≤ i, j ≤ `〉,

so T =
⊕

β∈A Tβ has dimT = (` + 1)2. Here, these are all just formal symbols, but we

have written the notation to be suggestive. Next, G = {Γh : h ∈ R`} with

Γh1 = 1, ΓhX = X + h1,

ΓhẊ = Ẋ, ΓhẊ = Ẋ + h⊗ Ẋ.

Next, we define a model. Given a rough path x = (x,X) ∈ Rα,2α, i.e. x : [0, T ] → R`,
X(s, t) ∈ R`×`, and Chen’s relation. We build a model as follows:

(Πs1)(t) = 1, (ΠsXi)(t) = xi(s, t) = xi(t)− xi(s),

(Πs(Ẋi))( ψ︸︷︷︸
∈D

) = (ẋi)(ψ) = −
∫
ψ̇(t)xi(t) dt,

(ΠsẊi,j)(ψ) = (Xi,jt (s, ·))(ψ) = −
∫
ψ̇(t)Xi,j(s, t) dt.

Next, we have
Γs,s′ = Γx(s′,s).

We need to verify a number of things:

• 〈Πs, ϕ
δ
s〉 =

∫
((x(t)− x(s))ϕ( t−ss )1

δ . δα, which follows from x ∈ Cα.
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• Similarly,

(Πs(Ẋ)(ϕδs) = −
∫

d

dt
ϕs(t)X(s, t) dt = −1

δ

∫
ϕ̇(θ)X(s, s+ δθ) dθ.

Hence,
|(ΠsẊ)(ϕδs)| . [X]2αδ

2α−1‖ϕ‖C1 .

• Next, we need to check Πs′ = ΠsΓs,s′ . Indeed,

(Πs′Ẋ)(ψ) = −
∫
ψ̇(t)X(s′, t) dt,

(ΠsΓs,s′Ẋ)(ψ) = −
∫
ψ̇(t)(X(s, t) + x(s′, s)⊗ x(t)) dt

Since ψ is of 0 average,

= −
∫
ψ̇(t)(X(s, t) + x(s′, s)⊗ x(s, t)) dt

= −
∫
ψ̇(t)(X(s, t) + X(s′, s) + x(s′, s)⊗ x(s, t)) dt

By Chen’s relation,

=

∫
ψ̇(t)X(s′, t) dt,

as desired.

Next, we examine C2α
M . Assume Y ∈ C2α

M is of the form

Y (t) = y(t)1 + ŷ(t) ·X.

We claim that T ∈ C2α
M if and only if y = (y, ŷ) ∈ Gα,2α(x) (i.e. ŷ is a Gubinelli derivative

of y). Indeed,
‖Y (t)− Γt,t′Y (t′)‖r . |t− t′|2α−r.

This is
‖y(t)1 + ŷ(t) ·X − (y(t′)1 + ŷ(t′) · (X + x(t′, t)1))‖ . |t− t′|2α−1.

Choose r = α. Then
|ŷ(t)− ŷ(t′)| . |t− t′|α,

i.e. ŷ ∈ Cα. Next, choose r = 0. We get

|y(t)− y(t′)− ŷ(t′)x(t′, t)| . |t− t′|2α.

Imagine that we want to make sense of y · dx. This should really be the realization of
Y · Ẋ. We will give a candidate for the abstract multiplication and recover our previous
results using the reconstruction theorem.
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22 Applying Regularity Structures to Rough Path Theory
and Singular PDEs

22.1 Recovering a previous theorem as an application of the reconstruc-
tion theorem

For our rough path theory, we choose A = {α− 1, 2α− 1, 0, α} with α ∈ (1/3, 1/2). Here,
Tα = 〈X1, . . . , X`〉, where we think of X = (X1, . . . , X`) as an abstract candidate for the

path x(·) ∈ Cα, Tα−1 = 〈Ẋ1, . . . , Ẋ`〉, and T2α−1 = 〈 ˙Xi,j : 1 ≤ i, j ≤ `. We think of
Ẋ = [Xi,j ] = X ⊗ Ẋ. From this, we have

ΓhX = X + h1, ΓhẊ = Ẋ, Γh(X ⊗ Ẋ) = X ⊗ Ẋ + h⊗ Ẋ.

Recall that f : Rd →
⊕

α<γ Tα ∈ C
γ
M means ‖f(s) − Γstf(t)‖α . |s − t|γ−α. So if we

decrease the index, the regularity required would be rougher. Last time, we argued that if
Y (t) = y(t)1 + ŷ(t) ·X ∈ C2α

M , then the pair y(t) = (y(t), ŷ(t)) ∈ G α(x), i.e.

|ŷ(t)− ŷ(s)| . |t− s|α, |y(t)− y(s)− ŷ(s)x(s, t)| . |t− s|2α.

Now we want to examine another algebraic manipulation in our abstract setting, namely
we wish to make sense of Y · Ẋ, which we want to think of as (y1+ ŷX) · Ẋ = yẊ+ X̂⊗ Ẋ.
Because of this, consider

(Y · Ẋ)(t) = yẊ + ŷẊ.

Proposition 22.1. (y, ŷ) ∈ G α(x) if and only if Y · Ẋ ∈ C3α−1
M .

Proof.

(Y · Ẋ)(s)− Γs,t(Y · Ẋ)(t) = (y(s)Ẋ + ŷ(s)Ẋ)− (y(t)Ẋ + ŷ(t)Ẋ + (̂s)x(t, s)Ẋ)

= (y(s)− y(t)− ŷ(s)x(t, s))Ẋ + (ŷ(s)− ŷ(t))Ẋ

For the first coefficient, we want the estimate

|y(s)− y(t)− ŷ(s)x(t− s)| . |t− s|γ−(α−1) = |t− s|2α.

This is exactly the estimate for the Gubinelli derivative. Similarly, we want

|ŷ(s)− ŷ(t)| . |t− s|γ−(2α−1) = |t− s|α.

This gives the equivalence.

Now we wish to apply our reconstruction theorem to Y · Ẋ. More precisely, there exists
some operator J3α−1

M on C3α−1
M such that W := J3α−1

M (Y · Ẋ) satisfies

|(W −Πt(y(t)Ẋ + +ŷ(t)Ẋ))(ψδt )| . δ3α−1.
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Equivalently,
|W (ψδt )− (y(t)ẋ+ ŷ(t)Xt(t, ·))(ψδt )| . δ3α−1.

This is indeed the first theorem we proved in this class, namely given y = (y, ŷ) ∈ G α(x)
and x = (x,X) ∈ Rα,2α, there exists z ∈ Cα such that

|z(s)− z(t)− y(t)(x(s)− x(t))− ŷ(t)X(t, s)| . |t− s|3α−1

with ż = W .
To derive this theorem from estimate above it, we need to allow a ψ that is of the form

ψ(t) = 1[0,1](t) sot that ψδt (s) = 1
δ1[t,t+δ](s). This can be achieved by writing

1[0,1] =
∞∑
n=0

ϕn(t) + ψn(t),

where ψn, ϕn are smooth with compact support, suppϕn ⊆ [0, 2−n], and suppψn ⊆ [1 −
2−n, 1].

22.2 Applying regularity structure theory to understand a singular PDE

We now turn our attention to one of our singular PDE, say the KPZ equation{
ht = hxx + h2

x + ξ − C
h(x, 0) = h0(x),

where ξ is white noise. As we argued before, if ξε = ξ ∗x χε with χε(x) = 1
εχ(xε ), then the

corresponding PDE
hεt = hεxx + (hεx)2 + ξε − Cε

is well-posed, and limε→0 h
ε exists only if Cε ≈ C/ε, where C = 1

2

∫
χ2 (a theorem due to

Martin Hairer).
To achieve this, we first build an abstract version of our PDE and usr it to have an

abstract solution that is continuous with respect to its input (which in cludes a well-selected
version of ξ). Indeed, if we write P for the operator/kernel (∂t − ∂2

x)−1, then

h = P ∗ (h2
x + ξ − C) + P ∗ h0 = F(h).
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Then we would make sense of F in a suitable way, show that F has a fixed point, and this
would be our candidate for the solution. For this, we need some preparations.

Definition 22.1. Given a regularity structure (A, T,G), we say V ⊆ T is a sector if
V =

⊕
α∈A Vα with subspaces Vα ⊆ Tα and G(V ) ⊆ V .

Definition 22.2. If L =
∑
|k|=r ak∂

k is a differential operator, we say L̂ : V → T repre-
sents L if the following conditions hold:

• If τ ∈ Vα, then L̂τ ∈ Tα−r.

• L̂Γh = ΓhL̂.

• ΠaL̂τ = L(Πaτ).

We can also talk about products. In other words, we want to be able to multiply
f ∈ CαM and g ∈ CβM to get f � g ∈ Cα∧βM .

Recall that i we have a distribution F , then we can talk about

F ∗K “=”

∫
F (y)K(x− y) dy = F (y)K̃(y − x) dy =

∫
F (y)K̃x(y) dy,

where K̃(y) = K(−y), which suggests that we should define

(F ∗K)(ϕ) := F (K̃ ∗ ϕ).

For our purposes, we need to examine the regularity of F ∗K. A Schauder-type estimate
allows us to show that if K is singular at 0 with singularity of the form |x|α−d, then

F ∈ Cγ =⇒ F ∗K ∈ Cγ+α.

Here is the precise statement:

Theorem 22.1. Assume that K : Rd → R with the following conditions:

1. suppK ⊆ B1(0)

2. K ∈ C∞ (this can be relaxed), and |∂`K(x)| ≤ c`|x|α−d−|`| for all x.

Then
F ∈ Cγ =⇒ F ∗K ∈ Cγ+α

for all γ ∈ R, though for γ ∈ Z, we need to replace the Hölder spaces with Hölder-Zygmund
spaces.
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For the proof, we need a suitable candidate for function spaces that are equivalent to
Hölder spaces (and its variant would yield Besov spaces), except when γ ∈ Z. For γ < 0,
we have already discussed this; if r is the smallest integer such that r+ γ ≥ 0, then define

[u]γ,K = sup
x∈K

sup
α∈(0,1]

sup
ϕ∈Dr

|u(ϕδx)|
δγ

where Dr = {ϕ : ‖ϕ‖Cr ≤ 1, suppϕ ⊆ B1(0)}, and let

Cγloc = {u : [u]γ,K <∞ for all compact K}.

As for γ > 0 with γ = n+ γ0 and n ∈ N, define

[u]γ,K = sup
x∈K

sup
α∈(0,1]

sup
ϕ∈Dn

|〈u, ϕδx〉|
δγ

,

where Dn is the set of ϕ ∈ D such that
∫
ϕP (x) dx = 0 for all polynomials P with

degP ≤ n. It requires proof to show that when γ 6= Z, then these equivalent to the Hölder
norms.
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23 Norms and Schauder Estimates for Hölder-Zygmund Spaces

23.1 Equivalence of definitions of Hölder-Zygmund spaces

Recall that for our function spaces, we are using Hölder (or rather Hölder-Zygmund) spaces,
and one of the simplest regularity estimates that are available for elliptic/parabolic PDE
are the Schauder-type estimattes. For example, if K is smooth off of 0, with

1. suppK ⊆ B1(0)

2. |∂kK(x)| . |x|β−d−|k|,

our Schauder estimates assert that

u ∈ Cα =⇒ K ∗ u ∈ Cα+β.

Recall that for α < 0, Cα consists of u ∈ D′ such that

[u]α,K = sup
x∈K

sup
δ∈(0,1]

sup
ϕ∈Dr

|u(ϕδx)|
δα

<∞ for every compact K,

where Dr is the set ϕ ∈ D with suppϕ ⊆ B1(0) and ‖ϕ‖Cr ≤ 1. Here, r is the smallest
integer such that r + α > 0. As for α = n + α0 with n ∈ N and α ∈ (0, 1), Cα consists
of functions u such that ∂ku exists for |k| ≤ n, and ∂ku ∈ Cα0 , the Hölder continuous
functions of exponent α0.

We now define

[u]α,K = sup
x∈K

sup
δ∈(0,1]

sup
ϕ∈D(n)

|u(ϕδx)|
δα

<∞ for every compact K,

where now D(n) is the set of ϕ ∈ D such that suppϕ ⊆ B1(0), ‖ϕ‖L∞ ≤ 1, and
∫
ϕP = 0

for every polynomial P of degree at most n. Let us write Ĉα for the set of distributions u
for which [u]α,K <∞ for every compact K.

Proposition 23.1. Ĉα = Cα, and they are isomorphic.

Proof. Cα ⊆ Ĉα by Taylor expansion. For the converse, assume that u ∈ Ĉα, and pick
ρ ∈ D with

∫
ρ = 1. Recall that u = limε→0 u ∗ ρε and that u ∗ ρε is a smooth function for

each ε. Then using a telescoping sum, we can write

u− u(ρδx) =
∞∑
n=0

(u(ρ2−n−1δ
x )− u(ρ2−nδ

x ))

=

∞∑
n=0

(u(ρ2−n−1δ
x )− u(ρ2−nδ

x ))
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=

∞∑
n=0

u((ρ1/2 − ρ)2−nδ
x ).

Let us first assume that n = 0, i.e. α ∈ (0, 10, so that ρ1/2 − ρ ∈ C(0). This would allow us
to assert that

|u((ρ1/2 − ρ)2−nδ
x )| . (2−nδ)α.

This, in particular, implies that the above sum is uniformly convergent, so u must be a
function. On the other hand, this estimate implies that

|u(x)− u(ρδx)| . δα.

Finally,

|u(x)− u(y) . δα + |u(ρδx)− u(ρδy)|
= δα + |u(ρδx − ρδy)|.

Observe that

(ρ− ρa)δx = ρδx − ρδx+δa.

Hence, if we choose a = y−x
δ , then we get ρδx − ρδy. So we may select δ = |x− y| to assert

|u(ρδx − ρδy)| . δα = |x− y|α.

Thus,
|u(x)− u(y)| . |x− y|α,

as desired.
This completes the proof when n = 0. For higher n, we integrate by parts. For example,

if n = 1, then we can show that ∂xiu ∈ Cα for each i by the previous case.

23.2 Schauder estimates for Hölder-Zygmund spaces

Now we focus on our Schauder estimate. We use a Paley-Littlewood type expansion of
the kernel K but in the space variable. To prepare for this, start with a smooth function
ϕ with ϕ = 1on (0, 1/2] and suppϕ ⊆ [0, 1]. Then set ψ(x) − ϕ(x/2) − ϕ(x), so that
suppψ ⊆ [1/2, 2].
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Further define ψn(x) = ψ(2nx). Observe that

∞∑
n=0

ψn(x) =
∞∑
n=0

(ϕ(2n−1x)− ϕ(2nx))

= ϕ(2−1x),

which equals 1 in (0, 1]. Observe that suppψn ⊆ [2−n−1, 2−n+1], and if we write

K =

∞∑
n=0

(K(x)ψn(|x|)︸ ︷︷ ︸
Kn−1

) =

∞∑
n=−1

Kn(x)

with Kn ⊆ {x : |x| ∈ [2−n−2, 2−n} ⊆ B2−n(0), then by our assumption on K,

|Kn(x)| . 2−n(β−d), |∂kKn(x)| . 2−n(β−|k|−d).

More conveniently, we can think of this as

K =
∞∑

n=−1

2−nβ(2nβKn),

where the part in the parentheses looks like a Dirac delta. Here, the kernel K is a function
with K ∈ C∞(Rd \ {0}), supp ⊆ B1(0), |∂kK(x)| . |x|β−d−|k|.

We can now study u 7→ u ∗K, where u ∈ Cα. We wish to show that u ∗K ∈ Cα+β.

(u ∗K)(ξ) = “

∫∫
u(x− y)K(y)ξ(x) dx dy”

= “

∫∫
u(y)K̃(y − x)ξ(x) dx dy”

= u(K̃ ∗ ξ)

=

∞∑
n=−1

2−nβu(2nβK̃n ∗ ξ).

We wish to use u ∈ Cα to get an estimate for u(2nβK̃n ∗ ξ), where ξ = ψδa with ψ that
satisfies certain conditions. For example, if α + β < 0, then ψ ∈ Dr; otherwise, we need
some polynomial condition. We wish to use two pieces of information, u ∈ Cα and the
bounds on Kn. supp ξ ⊆ Bδ(a), and supp(2nβKn) ⊆ B2−n(0), and we have the bounds
|ξ| . δ−d and |2nβKn| . (2−n)d, which can be used to assert that supp ξ ∗Kn ⊆ Bδ+2−n(a)
and

|u(2−βKn ∗ ξ)| . (δ + 2−n)α.
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We are assuming α+ β < 0, so

|(u ∗K)(ξ)| .
∑
n

(δ + 2−n)α2−nβ

=
∑

n:2−n<δ

+
∑

n:2−n>δ

≤ δα
∑

2−n<δ

2−nβ +
∑

2−n>δ

2−n(α+β)

. δαδβ +
∑

n≤log2
1
δ

(2−(α+β))n

. δα+β + (2−(α+β))log2
1
δ

= 2δα+β,

as desired.
Next, let us examine the case of α+ β > 0. In this case, we assume that

∫
ψP dx = 0,

P is a polynomial, and degP ≤ α + β. We need to use the latter condition to improve
our second bound (even when α < 0). This can be achieved by subtracting a suitable
polynomial P from 2nβKn because ξ is orthogonal to such polynomials. We omit the rest
of the details.
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24 Setup for Solving the KPZ Equation

24.1 Kernel of the KPZ equation

Last time, we showed that if u ∈ Cα, then u ∗K ∈ Cα+β, where K is a function that has
the following properties:

(i) suppK ⊆ B1(0), and K is smooth off of 0.

(ii) |∂kK(x)| . |x|β−d−|k|.

For example, when K is the kernel of (−∆)−1 and d ≥ 3, then we have our estimate for
β = 2, except that its kernel c0|x|2−d is not of compact support. However, we can express
our kernel as K + K̂, with K as above and K̂ a smooth function so that u ∗ K̂ is smooth.
Moreover, instead of convolution, we can also integrate againsta kernel K(x, y), and for
our Schauder estimate, we need K to behave smoothly away from the diagonal, and near
the diagonal as above.

For our KPZ equation, we need a Schauder estimate for the operator (∂t −∆)−1. Its
kernel, K(x, t) := (4πt)−d/2e−|x|

2/(4t)
1{t>0} does not look like what we have had so far.

Though we can achieve a similar claim with identical proof, provided that we follow the
parabolic scaling, treating time as 2.

For one thing, we may use the metric

d((x, t), (y, s)) = |(x− y, t− s)|par = |x− y|+
√
|t− s|

and denote

ϕ̃δ(y,s)(x, t) =
1

δd+2
ϕ(x−yδ , t−s

δ2 ),

where the ∼ means that we are using parabolic scaling. We can also discuss the size of a
multiindex by

k = (k1, . . . , kd, kd+1︸︷︷︸
time variable

), |k|par = k1 + · · ·+ kd + 2kd+1.

With these conventions, we may take a kernel K(x, t) and assume

|∂kK(x, t)| . |(x, t)|β−(d+2)−|k|par
par .

Moreover, if α < 0, then C̃α(Rd+1) would consist of distributions F such that

[F ]α,K = sup
(x,t)∈K

sup
δ∈(0,1]

sup
ϕ∈Dr

|F (ϕ̃δ(x,t))|
δα

<∞.

In particular, we will have our Schauder estimate for such a kernel K, in the sense that if
u ∈ C̃α, then K ∗ u ∈ C̃α+β.
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For example, the bound above holds for the heat kernelK(x, t) = (4πt)−d/2e−|x|
2/(4t)

1{t>0}
for β = 2. Here are some details:

t−d/2e
− 1

4
(
|x|√
t
)2

. (|x|+
√
t)2−(d+2) = (|x|+

√
t)−d =

(
|x|√
t

+ 1

)−d
t−d/2.

This is equivalent to

e−z
2/4 . (z + 1)−d, or (z + 1)d . ez

2/4.

Taking d
dt gives

t−d/2−1e
− 1

4
(
|x|√
t
)2

. (|x|+
√
t)−d−2 = (

√
t)−d−2

(
|x|√
t

+ 1

)−d−2

.

Then we can expand the left hand side to get that

t−d/2

t

|x|2

t
e
− 1

4
(
|x|√
t
)2

. (
√
t)−d−2

(
|x|√
t

+ 1

)−d−2

.

Then perform induction.

24.2 Regularity considerations for white noise

Return to the KPZ equation {
ht = ∆h+ |hx|2 + ξ

h(x, 0) = h0(x),

which can be written as
h = K ∗ h0 +K ∗ (|hx|2 + ξ),

where ξ is the white noise. Let us examine the regularity of ξ. Recall that ξ(x, t) is
Gaussian with

E[ξ(ϕ)] = 0, E[(ξ(ϕ))2] =

∫
ϕ2 dx dt.

Hence,

E[(ξ(ϕ̃δ(x,s)))
2] =

∫
(ϕ̃δ(x,s))

2 dx dt

=

∫ (
1

δd+2

)2

ϕ(y−xδ , t−sδ ) dt dy

= δ−(d+2)

∫
ϕ2.
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We learn that
(E[|ξ(ϕ̃δ(x,s))|

2]])1/2 = δ−(d+2)/2‖ϕ‖L2 ,

hence
(E[|ξ(ϕ̃δ(x,s))|

2q])1/(2q) = cqδ
−(d+2)/2‖ϕ‖L2 .

One can show that if ξ is any random Schwartz distribution with (E[(ξ(ϕ̃δ(x,s)))
2q])1/(2q) .

δ, then ξ ∈ Ĉ−α−1/(2q) as in Kolmogorov’s theorem. Accepting this for now, we learn
that |xi ∈ C̃−(d+2)/2−ε(Rd+1) for any ε > 0. Here, we are using parabolic scaling. As
a result, we can use our Schauder estimate to assert that if K is the heat kernel, then
K ∗ ξ ∈ C̃−d/2+1−ε =: C̃−d/2+1(Rd+1). For example, when d = 1, then K ∗ ξ ∈ C̃1/2−, which
really means C1/2− in space and C1/4− in time.

24.3 Strategy for solving the KPZ equation

We wish to solve the KPZ equation{
ht = ∆h+ |hx|2 + ξ + C

h(x, 0) = h0(x),

where we should really solve this as we vary the constant C. If we choose a smooth function
for ξ, then we can solve this equation classically. Let us write Sc(C, ξ, h0) for the classical
solution. Here is the picture of what this will look like when with lift it:

Here is our strategy: We build a regularity structure that would allow us to solve the
KPZ equation in abstract space, once we have a recipe for the meaning of h2

x so that this
abstract solution is indeed a continuous operator. However, we still need to build our
regularity structure. For this, let us now focus on our operator F 7→ F ∗K, where K is
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the heat kernel. We claim that if our regularity structure (A,G, T ) is “rich enough,” then
we can build an operator K : CγM → C̃

γ+2
M such that

R(Kf) = K ∗ Rf.

Here, C̃γM = {f : Rd+1 →
⊕

α<γ Tα : |Γyxf(x) − f(y)| . |x − y|γ−αpar }, and we have the
reconstruction theorem:

Theorem 24.1 (Reconstruction theorem).

|(Rf −Πxf(x))(ϕ̃δx)| . δγ .

As a warm-up, first let us assume that the kernel K is smooth (no singularity at 0), and
assume that our regularity structure has a sector consisting of polynomials: a subspace T
of T such that Tn = 〈Xk : |k| = n〉. Then, since K ∗ F is smooth for any distribution F ,

(Kf)(a) =
∑
k

1

k!
(∂kK ∗ Rf)Xk.

Next time, we will cover the general case.
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25 Multiplication of Abstract Candidates

25.1 Motivation: Necessity of multiplication in the solution for KPZ

We have formulated a general strategy for treating (subcritical) ill-posed PDEs. Our
strategy is to isolate the bad parts, interpret them in an abstract setting, come up with an
abstract solution, and use reconstruction theory to give an actual solution. We now would
like to describe this strategy in detail for the KPZ equation{

ht = hxx + h2
x + ξ − C

h(x, 0) = h0(x),

where h : R× [0, T ] → R and ξ is white noise. We would like to construct a solution as a
fixed point of a suitable operator

h = P ∗ (h2
x + ξ − C) + P ∗ h,

where P is the heat kernel, and by P ∗ h, we mean h integrated against P . Last time,
we discussed Schauder-type estimates that give regularity for the expression f 7→ P ∗ f
in the sense that if f ∈ Cαpar, then P ∗ f ∈ Cα+2

par . We argued last time that there would
be a multi-layer type Schauder estimate that is applicable for general regularity structure
under some natural conditions. We would be able to come up with an operator P such
that if f ∈ CγM (f : Rd →

⊕
α<γ Tα), then our reconstruction theorem would turn f into

Rf , which is a distribution that is well approximated by Πxf(x) near x. Moreover,

R(Pf) = P ∗ Rf,

and, as we will see later, we can rewrite P = I + Î , where Î would be a polynomial like
dealing with the Taylor approximation of the smooth part of P ∗ Rf . So, in some sense,
only the I part of P would capture the true nature of the singularity of the kernel P.

To solve this heat kernel equation, we first formulate an abstract variant that can be
solved as a fixed point of some nice continuous operator. In other words, the solution we
are looking for can be expressed as h = RH, where H solves an equation of the form

H = P((∂H)2 + Ξ) + (P ∗ h0)1

= I ((∂H)2 + Ξ) + Î ((∂H)2 + Ξ) + (P ∗ h0)1.

Here, Ξ represents ξ in the abstract setting,10 ∂ represents the spatial derivative (should
satisfy Πa(∂τ) = ∂

∂x(Πaτ)), and (∂H)2 is a candidate for (∂H)(∂H).
What do we mean by multiplying two members of our Banach space T? Basically, our

regularity structure must be rich enough so that such multiplication can be carried out.
Here is our general definition for any multiplication type operation.

10Professor Rezakhanlou is using Θ in the lectures instead of Ξ because he doesn’t like letters with 3
connected components. On a keyboard, I have no such objection.
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Definition 25.1. Given a regularity structure (A, T,G) and two sectors V and V (i.e.
V =

⊕
α∈A Vα, with Vα a subspace of Tα and with each Vα invariant under G), we say

? : V × V → T sending (τ, τ) 7→ τ ? τ is a multiplication if the following conditions are
true:

1. ? is bilinear.

2. If τ ∈ Vα and τ ∈ V α′ , then τ ? τ ∈ Tα+α′ .

3. If Γ ∈ G, then Γ(τ ? τ) = (Γτ) ? (Γτ).

Example 25.1. Take τ = Xk and τ = Xk. Then τ ? τ = Xk+k.

Recall that f ∈ CγM means that ‖f(x)− Γx,yf(y)‖β . |x− y|γ−β.

Proposition 25.1. Let f1 ∈ CγM with f1 : Rd → R and f1(x) ∈
⊕

α1≤α<γ1
Tα, and Let

f2 ∈ CγM with f2 : Rd → R and f2(x) ∈
⊕

α2≤α<γ2
Tα. Define (f1 ? f2)(x) = f1(x) ? f2(x).

Then f1 ? f2 ∈ CγM with (γ1 + α2) min(γ2 + α1).

Proof.

‖Γx,y(f1 ? f2)(y)− (f1 ? f2)(x)‖β = ‖(Γx,yf1(y)) ? (Γx,yf2(y))− f1(x) ? f2(x)‖β
= ‖(Γx,yf1(y)− f1(x)) ∗ (Γx,yf2(y)− f2(x))

+ (Γx,yf1(y)− f1(x)) ? f2(x)

+ f1(x) ? (Γx,yf2(y)− f2(x))‖

.
∑

β1+β2=β

(|x− y|γ1−β1 |x− y|γ2−β2

+ |x− y|γ1−β1 + |x− y|γ2−β2)

=
∑

β1+β2=β

|x− y|γ1+γ2−β + |x− y|γ1+β2−β

+ |x− y|γ2+β1−β

. |x− y|[(γ1+α2)∧(γ2+α1)]−β.

25.2 Basis for a multiplicatively closed regularity structure

We now use our fixed point equation to guess what regularity structure we need. As is
done in mathematical physics, we will use graphical notation.11 We use ◦ for Ξ and o for
the operator I , so that I (Ξ) is o◦. Because of this, we would also have a component which
is like I ((∂o◦)2). This involves ∂I =: I ′. Graphically, we use | for I ′ so that ∂o◦ = |◦.

11I hate this.
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Here is a table of some of the terms:

degree expression model

0 1 constants
−3

2 − ε Ξ, ◦ ξ
1
2 − ε I (Ξ), o◦ P ∗ ξ
−1

2 − ε I ′(Ξ), |◦ (P ∗ ξ)x
−1− 2ε (I ′(Ξ))2, o∨o (P ∗ ξ)2

x

1− 2ε I ((I ′(Ξ))2), P ∗ (P ∗ ξ)2
x

1 X1 x− a

Here is a basis of 14 members of T (ignoring polynomials of higher order), ordered according
to their degrees:12

This will give us

12There’s no way I’m trying to recreate all of these in LaTeX.
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26 Fixed Point Operators for Solving Abstract Regularity
Structure PDEs

26.1 Fixed point operators for solving our ill-posed PDEs

We are interested in ill-posed problems like:

ht = ∆h+ |hx|2 + ξ − C,

where ξ is white noise. This is subcritical iff d ≤ 1. If we have

ut = ∆u− u3 + ξ + C1 + C2u,

this model is subcritical if d ≤ 3. Here, we can vary the constants, so we are dealing with
a family F of differential equations.

The general strategy for subcritical models is summarized in the following diagram:

We need to find a group action G on our model so that if ξε = ξ ∗ ρε, then

lim
ε→0
SaMε(L(ξε))

exists, where Mε is a suitable family of members of G. This G would lead to a suitable Ĝ on
F . In our stochastic setting, since our distributions are all Gaussian, Wick’s trick would
allow us to discover what G is. Let us now focus on constructing Sa as we did last time.

As we discussed before, we consider the weak formulation

ht = p ∗ (|hx|2 + ξ) + h,

where p is the heat kernel and h solves the heat equation:{
ht = hxx

h(x, 0) = h0(x).
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For the other problem, we have

u = p ∗ (−u3 + ξ) + u

with {
ut = ∆u

u(x, 0) = u0(x).

Last time, we argued that f 7→ p ∗ f can be lifted to a suitable operator K that can be
decomposed as K = I + K̂, where K̂ is polynomial like annd I is somewhat local. Ideally,
we could like to have this: An operator K : T → T or K : Cα → Cα+2 so that{

Πx(Kτ) = p ∗Πxτ (f ∈ Cα Πx(Kf)(x) = p ∗Πxf(x))

ΓKτ = KΓτ.

Such K would not exist. Here is the problem: if τ ∈ Tα, then |(Πxτ)(ϕδx)| . δα. So
Kτ ∈ Tα+2, and we must have an estimate of the form |(Πx(Kτ))(ϕδx)| . δα+2. The
problem is that in general, there is no reason for p ∗Πxτ to vanish like δα+2 near the point
x. This can be resolved if we subtract a suitable Taylor expansion. Motivated by this, we
may define I by the following recipe. If τ ∈ Tα,

Πx(I τ)(y) = p ∗Πxτ(y)−
∑

k:|k|<α+2

∂k(p ∗Πxτ)

k!
(y − x)k.

Because of this, we do not expect to have ΓI τ = I Γτ , but we do have that (ΓI −I Γ)(τ)
is in a sector of polynomials. (This should be compared with the differentiation operator:
If “∂” is the lift of ∂

∂x1
, then we do expect Πx(∂τ) = ∂

∂x1
(Πxτ) and ∂Γ = Γ∂.)

26.2 Using graphical notation with regularity structures to solve ab-
stract PDEs

In the abstract version,{
H = I ((∂H)2 + Ξ) + Polynomial part from K̂ + h1

U = I (Ξ− U3) + Polynomial part + u1,
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where Ξ represents white noise, we use the following graphical notation.13

Here are all the terms we need to discuss H:

We want to formulate a fixed point problem for H.

13I’ve decided to stop trying to type out any graphical notation. From here on out, it will all be pictures.
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It can be shown that if H satisfies the abstract equation, then e1 = e2 = 0.

Here, we have noted that by comparing coefficients, we can see that c1 = c2 = 1, c3 = 2,
and c4 = ĥ. From all this, we learn that

We can play a similar game with the abstract equation for U . To have simpler notation,
we write | for I (instead of o). We get

We still need to find the group G. This is a suitable set of transformations Γ : T → T .
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This group of 16× 16 matrices is 7-dimensional.
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27 Algebraic Structure in Our Regularity Structure

27.1 Products structures in rough path theory

What kind of algebra leads to our group G and the form Γx,y? We first discuss Hopf
algebras.14 In fact, Connes and Kreimer have observed that a suitable Hopf algebra on
the polynomials of “decorated trees” can be used to explain renormalization phenomena
in quantum field theory and Feynman diagrams.

To motivate the role of such algebras, let us go back to our rough path theory first.
Indeed, if we have a path x = (x1, . . . , x`) : [0, T ]→ R`, then we need a candidate for

〈x(s, t), ei1···ir〉 =

∫ t

s

∫ s1

s

∫ sr

s
dxi1(x1) · · · dxir(sr) =: ai1,...,ir .

What we have in mind is that we choose a lift for the path x that is tensor-valued, and
this condition yields the ei1···ir component of such a tensor. More precisely, if the space of
tensors T (Rd) = R⊕ `` ⊕ · · · ⊕ (R`)⊗n ⊕ · · · , then

x(s, t) =
∑
i1,...,ir

ai1,...,irei1,...,ik ,

where ei1,...,ir = ei1 ⊗ ei2 ⊗ · · · ⊗ eir and the e1 · e`s form a basis for R`. As we have seen
before, if x ∈ Cα with 1

n < α ≤ 1
n−1 , then we can truncate our tensor at level n− 1. Note

that if x ∈ Cα, then the type of regularity we have is

|〈x(s, t), ei1···ir〉| . |s− t|rα.

Recall that Chen’s relation becomes x(s, u) ⊗ x(u, t) = x(s, t), which allows us to only
consider x(0, t) because x(s, t) = x(0, s)−1 ⊗ x(0, t).

Recall that when 1
3 ≤ α <

1
2 , for a metric path, we have

X(s, t) + X∗(s, t) = x(s, t)⊗ x(s, t),

or
〈x(s, t), ei,j + ej,i〉 = 〈x(s, t), ei〉〈x(s, t), ej〉.

However, for low α, the geometric condition becomes

〈x(s, t), ei1,...,ir〉〈x(s, t), ej1···j`〉 = 〈x(s, t), ei1,...,ir ttej1,··· ,j`〉,

where a ttb means the shuffle product of a and b:

ei1···ir ttej1···j` =
∑

ek1···kr+` ,

where k1, · · · , kr+` is obtained from i1, . . . , ir, j1, . . . , j` by interleaving them without chang-

ing the original order. So there are exactly (k+`)!
k!`! many terms.

14Historically, Hopf was studying homology and cohomology on Lie groups, where the additional multi-
plication of the Lie group gave extra algebraic structure to the homology.
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Example 27.1.
ei ttej = ei,j + ej,i

Example 27.2.
ei ttej,k = ei,j,k + ej,i,k + ej,k,i

In summary, for a geometric path, we have two products on T (R`):{
x(s, u)⊗ x(u, t) = x(s, t)

〈x(s, t), a〉〈x(s, t), b〉 = 〈x(s, t), a ttb〉.

How about for a nongeometric path? This has been worked out by Gubinelli and involves
Connes-Kreimer’s Hopf algebra (the theory of branched paths). In this case, the right
space is not the tensor algebra, rather the algebra of polynomials of decorated binary trees
with decorations/labels selected from {1, . . . , `}. Write H for this space. Now x

¯
(s, t) takes

values in H.

Example 27.3.

What happens to Chen’s relation? There is an other product, the convolution product
? that would allow us to represent Chen’s relation as

x(s, u) ? x(u, t) = x(s, t).

Before we define this, let us discuss the notion of Hopf algebras first.

27.2 Hopf algebras

Let H be an algebra with unit 1 and product ·. Also suppose we have an algebra on H∗.
Let us write 〈·, ·〉 : H∗ × H → R for the pairing between H and H∗. We write f ? g for
the product on H∗ and 1∗ for its unit. We use pairing to turn ? into a “coproduct” on H.
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Also, inversion in H∗ can be translated into a suitable notion on H. When this is done
successfully, we have a Hopf algebra.

Here is the idea: if f, g ∈ H∗ and h ∈ H, then

〈f ? g, h〉︸ ︷︷ ︸
pairing of H∗,H

= 〈f ⊗ g, C(h)〉︸ ︷︷ ︸
pairing of H∗ ⊗H∗,H⊗H

.

If we find such a C, then we have a bialgebra. Here, C is our coproduct C : H → H⊗H.
We now try the idea of the inverse: If f ∈ H∗ is invertible, then f ? f−1 = 1∗. We wish

to find an operator S : H → H so that S∗ : H∗ → H∗ is exactly S∗(f) = f−1. If such an
operator exists, then we should have

〈1∗, h〉 = 〈f ? S∗f, h〉
= 〈f ⊗ S∗f, C(h)〉
= 〈((id⊗S∗)(f ⊗ f), C(h)〉
= 〈f ⊗ f, (id⊗S)C(h)〉.

Assume 〈f,1〉 = 1. Then if we require (id⊗S)C(h) = 〈1∗, h〉1, then we have our S. And
if such a C and S exist, we have a Hopf algebra.

Definition 27.1. A Hopf algebra is an algebra H with a coproduct C : H → H⊗H and
an operator S : H → H such that

(id⊗S)C(h) = 〈1∗, h〉1.

Example 27.4. Let H be the algebra generated from (∂i = ∂
∂xi

: i = 1, . . . , d) with the
product given by the composition: D = ∂i1,...,ik = ∂i1 · · · ∂ik . H∗ is the space of smooth
functions with pointwise multiplication. The pairing is 〈f,D〉 = (Df)(0).

We claim that this is a Hopf algebra. One can show by integration by parts that

C(∂i) = id⊗∂i + ∂i ⊗ id,

C(∂i∂j) = id⊗∂i,j + ∂i ⊗ ∂j + ∂j ⊗ ∂i + ∂i,j ⊗ id .
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28 Hopf Algebras for Constructing Regularity Structures

28.1 Building up to Hopf algebras

Here is the algebraic part of the story: We learn how to build an important group of
transformations {Γg : g ∈ G0} = G for a Hopf algebra. It is this group that yields our
group G in our regularity structure. Here are the first few steps:

Definition 28.1.

1. Algebra: Given a field k and a k-vector space A, by a product, we mean a linear
map m : A ⊗ A → A that is associative. We also have a unit 1 ∈ A, which we also
write as 1 : k → A by 1(λ) = λ1.

2. Coalgebra: With A as above, we now have a coproduct, a linear ∆ : A → A⊗ A
(we can think of this as ∆a =

∑
i a
i ⊗ âi with au, âi ∈ A). This is coassociative,

which means
(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ : A→ A⊗A⊗A.

We also have a counit 1′ : A→ k such that

∆a =
∑
i

ai ⊗ âi =⇒
∑
i

1′(ai)âi =
∑
i

1′(âi)ai = a.

(In fact, ∆ being a coproduct is equivalent to ∆∗ : A∗ ⊗A∗ → A∗ is a product.)

3. Bialgebra: This is (A;m,1; ∆,1′) with (A;m,1) an algebra, (A,∆,1′) a coalgebra,
and compatibility between these two structures: First, define a product m2 : A⊗A⊗
A⊗A→ A⊗A by extending the following bilinear map:

m2(a⊗ b, a′ ⊗ b′) = m(a, a′)⊗m(b, b′).

The compatibility is that ∆ : (A,m) → (A ⊗ A,m2) is a morphism with respect to
the algebra structures:

∆(m(a, b)) = m2(∆(a),∆(b)).

We may also write this as ∆(a · b) = (∆a) ·2 (∆b).

4. Convolution product: If (A;m,1) is an algebra, (C; ∆,1′) is a coalgebra, let
Lk(C,A) be the set of linear maps C → A (for example L(C, k) = C∗). Then we can
turn Lk(C,A) into an algebra by

(f ? g)(c) = (m ◦ (f ⊗ g) ◦∆)(c).

Indeed,

∆c =
∑
i

ci ⊗ ĉi =⇒ (f ? g)(c) =
∑
i

f(ci) ·m g(ĉi),

where a ·m b = m(a, b). Here is our unit element: 1A ◦ 1′C : C → A. This is nothing
other than (1A ◦ 1′C)(c) = 1C(c)1A.
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Remark 28.1. If A = k, then L(C, k) = C∗, and f ? g = f ?∆ g = ∆∗(f, g). In particular,

∆c =
∑
i

ci ⊗ ĉi =⇒ (f ? g)(c) =
∑
i

f(ci)g(ĉi).

Example 28.1. Let (G, ·, 1) be a group, and let k be a field. Then A = kG = spank{g :
g ∈ G} have multiplication m(g1, g2) = g1 · g2, unit 1 = 1, coproduct ∆(g) = g ⊗ g, and
counit 1′(

∑
i λigi) =

∑
i λi. Then (kG;m, 1; ∆,1′) is a bialgebra.

Definition 28.2.

5. Hopf algebra: By a Hopf algebra, we mean a bialgebra (H;m,1; ∆,1′) for which
we can find a linear S : H → H such that if ? is the convolution product for Lk(H,H),
then

(S ? idH)(h) = (idH ?S)(h) = 1′(h)1,

where idH , S : H → H. Equivalently,

∆h =
∑
i

hi ⊗ ĥi =⇒
∑
i

hi ·m S(ĥi) =
∑
i

S(hi) ·m ĥi = 1′(h)1.

Example 28.2. Continuing our previous example, our kG is a Hopf algebra with S(g) =
g−1 for g ∈ G.

28.2 Constructing a group of transformations from a Hopf algebra

Here is the next step:

6. Let (H;m,1; ∆,1′;S) be a Hopf algebra, and assume that we have a pairing of H∗

and H (not necessarily the dual space pairing). Then (H∗; ∆∗, (1′)∗;m∗,1∗;S∗) is
again a Hopf algebra. Given g ∈ H∗, set Λg : H∗ → H∗ by Λg(f) = f ·∆∗ g. We write
Γg : H → H for Λ∗g:

〈∆∗(f, g), h〉 = 〈f ⊗ g,∆h〉 = 〈Λg(f), h〉 = 〈f,Γg(h)〉 = f(Γg(h)).

Then

∆h =
∑
i

hi ⊗ ĥi =⇒
∑
i

f(hi)g(ĥi) = f

(∑
i

g(ĥi)hi

)
,

so

∆h =
∑
i

hi ⊗ ĥi =⇒ Γg(h) =
∑
i

g(ĥi)hi =
∑
i

(id⊗g)(hi ⊗ ĥi)

= (id⊗g)

(∑
i

hi ⊗ ĥi
)

= (id⊗g)∆h.
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Thus, we have shown that
Γg = (id⊗g) ◦∆.

In summary, we have a map Γ : H∗ → L(H).

Remark 28.2. The map g 7→ Γg does not act nicely with respect to the product structure
on H∗.

7. Define G0 = {g ∈ H∗ : g(h1 ·m h2) = g(h1)g(h2). We claim that G0 is a group and
Γg1·∆∗g2 = Γg1 ◦ Γg2 for g1, g2 ∈ G0 (so G = {ΓgLg ∈ G0} is a group). In the interest
of time, we will not show this now.

Definition 28.3.

8. We say that our bialgebra H is graded if H = ⊕n≥0Hn with m : Hn⊗Hm → Hn+m

and ∆ : Hn → ⊕i+j=nHi ⊗Hj and connected if H0 = span{1}.

Theorem 28.1. For a graded and connected bialgebra, an antipode S exists is unique, and
S : Hn → Hn. In fact,

S =
∑
k≥0

(1 ◦ 1′ − id)·mk.
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29 The Final Ingredients in Our Regularity Structure

29.1 Constructing the group of transformations from a Hopf algebra

Consider a Hopf algebra (H; ·,1; ∆,1′;S) with dual (H∗; ∆∗, (1′)∗; ·∗,1∗;S∗). Recall that
we also have an algebra (L(H), ?,1 ◦ 1′), and recall that S = (idH)−1 where the inverse is
with respect to ?. Finally, we defined a map Γ : H∗ → L(H). (The example we should
keep in mind is H = T for the KPZ equation or for another PDE and G is a group of
Γ : H → H.) We defined Λ : H∗ → L(H∗) given by Λg(f) = f ·∆∗ g, which allowed us to
define Γg = Λ∗g.

Observe that Λg1·∆∗g2 = Λg2 ◦ Λg1 . From this, we can readily deduce that Γg1·∆∗g2 =
Γg1 ◦ Γg2 . In other words, we have Γ : (H∗, ·∆∗) → (L(H), ◦) as a homomorphism with
respect to these algebra structures. For our purposes, we need a group. Namely, define the
group of characters

G0 = {g ∈ H∗ : g : H → R linear, g(h1 · h2) = g(h1)g(h2), g(1) = 1}.

We can see15 that if g1, g2 ∈ G0, then g1 ·∆∗ g2 ∈ G0. It turns out that if g ∈ G0 and
ĝ = g ◦ S ∈ G0 then ĝ ·∆∗ g = g ·∆∗ ĝ = (1′)∗.

Recall that a graded bialgebra has H =
⊕

nHn with · : Hm ⊗ Hm → Hn+m and
∆ : Hn →

⊕
i+j=nHi⊗Hj , and recall that a connected bialgebra has H0 = {λ1 : λ ∈ k}.

Theorem 29.1. Any connected, graded bialgebra has a unique antipode S.

Proof. Here is the idea: Let u0 = 1 ◦ 1′ denote the unit for (L(H), ?). We want to say
something like

(id)−1 = (u0 − (u0 − id))−1

=
∑
k≥0

(u0 − id)?k.

This is algebra; we can’t have an infinite sum! All we need to verify is that the if h ∈ Hn,
then (

∑
k≥0(u0 − id)?k)(h) =

∑n
k=0(u0 − id)?k for some n. This is where the graded

condition comes in.

Example 29.1. Let H = T (R`) =
⊕

n≥0Hn, with Hn = span{ei1,··· ,in : i1, . . . , in ∈
{1, . . . , `}}. The product on H is the shuffle product, eI tteJ . The coproduct is ∆(v1⊗
· · · ⊗ vn) =

∑
i(v0 ⊗ · · · ⊗ vi) ⊗ (vi+1 ⊗ · · · ⊗ vn) with v0 = 1. We are interested in

x : [0, T ]2 → H∗ with

〈x, ei1,...,in〉 =

∫ T

0
· · ·
∫ T

0
dxi1 · · · dxin .

15Professor Rezakhanlou uses the phrase “It is not hard to see.” He has gotten comments from referees
on his papers saying that he should prove more things. I like to avoid that phrase because sometimes it is
hard to see.
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As we discussed before, we require two properties:

1. x is a character:

x(a ttb) = 〈x, a ttb〉 = x(a)x(b) = 〈x, a〉〈x, b〉.

2. Chen’s relation:

x(s, u) ·∆∗ x(u, t) = x(s, t), so x(s, t) = (x(s))−1 ·∆∗ x(t).

Now we want to use the same idea for the KPZ equation, but it doesn’t work exactly
the same way. We need a small variation of what we have done so far so we can deal with
functions and distributions separately. Namely, we have two spaces (T, ·) (algebra) and
(T ∗, ·, ∆̃+), where ∆̃+ is a suitable coproduct. Moreover, we need ∆+ : T → T ⊗ T+.

Recall that Γg = (id⊗g) ◦∆. Now given g ∈ (T+)∗, we define Γg(h) = (id⊗g) ◦∆+(h)
(so Γg : T → T ). Again, we may define

G+ = {g ∈ (T+)∗ : g(h1 · h2) = g(h1)g(h2), g(1) = 1},

which is a group. As before, we have

Γg1·∆+g2 = Γg1 ◦ Γg2 .

Given the pair (T, T+) with ∆+, we are ready to build our regularity structure (not
just for KPZ but for all the examples that have been worked out in this context). We use
the following scheme:

First, build a linear Π : T → D′, and imagine we have a map F : Rd → G = {Γg :
G ∈ G+}, so F (x) = Γf(x). Then we set Πx = Π ◦ F−1

x . Then the requirement that
ΠxΓx,y = Πy or ΠF−1

x Γx,y = ΠF−1
y leads to Γx,y = F−1

y ◦ Fx. In fact, our T is the
algebra generated by 1, X1, X2, ∂`I (τ),I (τ), . . . . T+ is the algebra freely generated by
1, X1, X2, ((∂`I )(τ) : 2− deg τ − |`| > 0). Set

∆+(1) = 1⊗ 1, ∆+(Xi) = 1⊗Xi +Xi ⊗ 1, ∆+(Ξ) = Ξ⊗ 1,

∆+( τ · τ ′︸ ︷︷ ︸
product in T

) = ∆+(τ) ·∆+(τ ′)︸ ︷︷ ︸
product in T+

,

∆+I (τ) = (I ⊗ id)∆+τ +
∑

`:|`|<deg τ+2

X`

`!
⊗ ∂`I (τ).
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29.2 Renormalization and the Wick product

We carry our all these operations to build a suitable operator H : Rx × [0, T ) → R which
depends on the model we have for ξ. Now replace ξ with the smoothized version |xi ∗ χε
and denote the correspoding solution by Hε. However, Hε does not converge as ε → 0.
For example, replace Ξ by ξε and consider ∂I (ξε); this does not converge as ε → 0. The
issue is (Kx ∗ ξε)2 →∞, where K is the heat kernel.

However, a miracle happens. If we look at (Kx − ξε)2 − E[(Kx ∗ ξε)2], this has a limit
as ε→ 0. We have ∫

f(z1, z2)ξ(z1)ξ(z2) dz1 dz2,

which causes a problem, and we replace it by∫
f(z1, z2)ξ(z1) � ξ(z2) dz1 dz2,

where � is the Wick product:

ξ(z1) � ξ(z2) = ξ(z1)ξ(z2)− δ0(z1 − z2).

It turns out that all that we need to do is subtract a constant. These constants lie in a 4
or 6 dimensional group, but in the original problem, we only see 1 dimension of this.
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